首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Predicting accurate cathode properties of layered oxide materials using the SCAN meta-GGA density functional(使用SCAN meta-GGA密度泛函精确预测层状氧化物阴极材料的性质)
发布时间:2018-11-19

Predicting accurate cathode properties of layered oxide materials using the SCAN meta-GGA density functional(使用SCAN meta-GGA密度泛函精确预测层状氧化物阴极材料的性质)
Arup ChakrabortyMudit DixitDoron Aurbach & Dan T. Major 
npj Computational Materials 4:60 (2018)
doi:s41524-018-0117-4
Published online:8 November 2018
Abstract| Full Text | PDF OPEN

摘要:层状锂嵌入过渡金属氧化物,是有望用于锂离子电池的阴极材料。本研究仔细梳理了最近开发的强约束和适当规范(SCAN)密度泛函方法,以此研究了原型阴极材料LiNiO2LiCoO2LiMnO2在不同锂嵌入极限下的结构、磁性和电化学性质。我们的研究表明,SCAN优于早期流行的泛函组合,在不使用Hubbard参数情况下,能得到与实验更为一致的结果,且受色散校正的影响很小。特别地,SCANPerdew-Burke-ErnzerhofPBE)泛函能更好地预测带隙和绝对电压,优于PBE + U预测电子态密度和电压分布,也优于PBEPBE + U预测电子密度和原位晶格常数。SCAN整体性能表现更好,可归因于局域态处理的改善和短程色散相互作用的更好描述   

Abstract:Layered lithium intercalating transition metal oxides are promising cathode materials for Li-ion batteries. Here, we scrutinize the recently developed strongly constrained and appropriately normed (SCAN) density functional method to study structural, magnetic, and electrochemical properties of prototype cathode materials LiNiO2, LiCoO2, and LiMnO2 at different Li-intercalation limits.We show that SCAN outperforms earlier popular functional combinations, providing results in considerably better agreement with experiment without the use of Hubbard parameters, and dispersion corrections are found to have a small effect.In particular, SCAN fares better than Perdew–Burke–Ernzerhof (PBE) functional for the prediction of band-gaps and absolute voltages, better than PBE+U for the electronic density of states and voltage profiles, and better than both PBE and PBE+U for electron densities and in operando lattice parameters.This overall better performance of SCAN may be ascribed to improved treatment of localized states and a better description of short-range dispersion interactions. 

Editorial Summary

Batteries: predicting cathodes(电池:预测阴极) 

各行各业对能源储存的需求不断增长。锂离子电池被视为满足这些需求的最有前途的技术选择之一。限制现代锂离子电池能量存储的关键因素,是阴极的电化学活性材料。现在来自以色列Bar-Ilan大学的Dan Major等,采用理论方法研究了三种原型层状阴极材料LiNiO2、LiCoO2和LiMnO2在不同Li嵌入极限下的结构细节、带隙、磁性、电子结构,以及形成能。所采用的强约束和适当规范泛函,提供了与大多数属性研究中的可用实验数据更为一致的结果,并证明强约束和适当规范泛函可作为精确预测材料性质的通用方法

There is an ever-growing demand for energy storage across a wide range of industries and markets. Lithium-ion batteries are viewed as one of the most promising technology choices to meet these needs.A key factor in limiting the amount of energy stored in modern lithium-ion batteries is the electrochemical active material in the cathode.Now, Dan Major and colleagues from Bar-Ilan University in Israel take a theoretical approach to investigate the structural details, band-gap, magnetic and electronic structure, and formation energy of three prototype layered cathode materials LiNiO2, LiCoO2, and LiMnO2at different Li-intercalation limits.The deployed strongly constrained and appropriately normed functional offers better agreement with available experimental data for most studied properties, and demonstrate itself to be a versatile method in materials computation for accurate property prediction.

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050