首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solar cells (新碳相:直接带隙、高载流子迁移率、钙钛矿太阳能电池的电子传输材料)
发布时间:2019-03-05

A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solar cells (新碳相:直接带隙、高载流子迁移率、钙钛矿太阳能电池的电子传输材料)
Ping-Ping SunLichun BaiDevesh R. Kripalani & Kun Zhou 
npj Computational Materials 5:9 (2019)
doi:s41524-018-0146-z
Published online:15 January 2019
Abstract| Full Text | PDF OPEN

摘要:钙钛矿太阳能电池的快速发展受到以下挑战:目前的半导体很难作为有效的电子传输材料,因其既不具有高的电子迁移率,也很难具有与钙钛矿相匹配的能级。本课题研究了T-carbon的性能,即一种新兴的碳同素异形体,可能成为应对这一挑战的理想候选材料。利用第一性原理计算和变形势理论,本研究发现T-carbon是一种直接带隙为2.273 eV的半导体,导带底的能级位置比钙钛矿低0.5 eV,电子注入力较大。此外,计算的电子迁移率可达到2.36?×?103?cm2?s–1?V–1,优于传统的电子传输材料,如TiO2ZnOSnO2,这将促进更高效的电子分离和更迅速地电子扩散,即快速离开钙钛矿吸收料的生成位点。此外,T-碳的带隙对应变高度敏感,为优化载流子输运提供了一种的便利的方法。总的来说,T-碳满足了潜在高效电子传输材料的要求,因此能够加速钙钛矿太阳能电池的发展   

Abstract:Rapid development of perovskite solar cells is challenged by the fact that current semiconductors hardly act as efficient electron transport materials that can feature both high electron mobility and a well-matched energy level to that of the perovskite. Here we show that T-carbon, a newly emerging carbon allotrope, could be an ideal candidate to meet this challenge. By using first-principles calculations and deformation potential theory, it is found that T-carbon is a semiconductor with a direct bandgap of 2.273?eV, and the energy level in the conduction band is lower than that of perovskite by 0.5?eV, showing a larger force of electron injection. Moreover, the calculated electron mobility can reach up to 2.36?×?103?cm2?s–1?V–1, superior to conventional electron transport materials such as TiO2, ZnO and SnO2, which will facilitate more efficient electron separation and more rapid diffusion away from their locus of generation within the perovskite absorbers. Furthermore, the bandgap of T-carbon is highly sensitive to strain, thus providing a convenient method to tune the carrier transport capability. Overall, T-carbon satisfies the requirements for a potential efficient electron transport material and could therefore be capable of accelerating the development of perovskite solar cells. 

Editorial Summary

New carbon allotrope: an excellent electronic transmission material for perovskite solar cells(新型碳同素异形体:卓越的钙钛矿太阳能电池电子传输材料 

一种新型碳同素异形体,T-碳,可作为钙钛矿太阳能电池(PSC的电子传输材料(ETM)。来自新加坡南洋理工大学的周昆教授领导的团队,通过第一性原理方法和形变势理论研究了T-碳的电子性质和载流子迁移率。他们的研究结果表明,T-碳是一种直接带隙为2.273 eV的本征半导体。其导带能级与钙钛矿的能级匹配良好,有利于从发电位置向ETM层注入电子,且在紫外光区的光吸收不会与紫外-可见光区的钙钛矿光捕获能力相竞争。更重要的是,T-碳具有2.36×103?cm2?s–1?V–1的高电子迁移率,优于传统的ETM材料,如TiO2ZnOSnO2,甚至MAPbI3钙钛矿。这些特征预示着T-碳有望成为一种卓越的高性能PSC的电子传输材料。从拉伸和压缩应变对应的不同能带结构显示,施加应变是调节其电输运性能的有效手段之一。基于其特殊结构和很大的应用潜力,对其开展实验研究以实现这些预测的各种实际应用将会非常有趣

A new carbon allotrope, T-carbon, can be used as an electron transport material (ETM) for perovskite solar cells (PSC). The team led by Professor Zhou Kun from Nanyang Technological University in Singapore used first-principles methods and DP theory to predict electronic properties and carrier mobility of T-carbon. They found that T-carbon is a natural semiconductor with a direct band gap of 2.273 eV. The conduction band energy level is well matched with the perovskite energy level, which facilitates the injection of electrons from the power generation location into the ETM layer, and the light absorption in the ultraviolet region does not compete with the perovskite light-capturing capability in the ultraviolet-visible region. More importantly, T-carbon has a high electron mobility of 2.36×103?cm2?s–1?V–1, which is superior to commonly used ETM such as TiO2, ZnO, SnO2, and even MAPbI3 perovskite. These characteristics indicate that T-carbon will be an excellent ETM candidate for high performance PSCs. The different band structures that evolved from tensile and compressive strains suggest that the application of strain can be an effective method to control the transport properties. Based on its special structure and great application potential, it will be very interesting and encouraging to carry out experimental research to realize various practical applications of these predictions.

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050