联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 OA系统
科技信息
超薄Ce:YAG闪烁晶体用于高...
东大开发在玻璃基板上溅射...
中科大实现量子态可恢复新...
IAP成功在柔性玻璃上制作...
Rare material key to com...
Sharper imaging using X-...
理光开发出适合室内光线的...
MHPS与NTK合作量产圆筒形S...
光驱动无机纳米晶自组装研...
6月13日《科学》杂志内容精选
Scientists shoot carbon ...
Formation of organic thi...
“碳纳米管与InGaZnO是绝...
纳米结构陶瓷涂层界面粘结...
不同材料纳米管具有不同摩...
现在位置:首页>新闻动态>科技信息
Bacterial nanometric amorphous Fe-based oxide as lithium-ion battery anode material
2014-06-27 08:24:31 | 编辑: |点击浏览:次| 【 【打印】【关闭】

    

 

  Figure 1. (a) High-magnification SEM image of L-BIOX. (b) TEM image showing a early stage of the formation of L-BIOX around rod-like bacterial cells lined up head to tail. 

  Leptothrix ochracea is a species of iron-oxidizing bacteria that exists in natural hydrospheres where groundwater outwells worldwide. Intriguingly, the bacterium produces Fe3+-based amorphous oxide particles (ca 3 nm diameter; Fe3+:Si4+:P5+73:22:5) that readily assemble into microtubular sheaths encompassing the bacterial cell (ca 1 μm diameter, ca 2 mm length, Fig. 1). The mass of such sheaths (named L-BIOX : Biogenous Iron Oxide produced byLeptothrix) has been usually regarded as useless waste, but Jun Takada and colleagues at Okayama University discovered unexpected industrial functions of L-BIOX such as a great potential as an anode material in lithium-ion battery.  

  Since use of the battery that is a powerful electric source for portable electric devices has expanded to a variety of new areas such as transportation and electric power storage, improvement of battery capability and effort to develop new electrode materials have been demanded. The general processes of nanosizing and appropriate surface modification which are required for tuning the battery property are complicated and cost-ineffective. By contrast, L-BIOX is a cost-effective and easily-handled electrode material, since its basic texture is composed of nanometric particles. 

  The charge-discharge properties of simple L-BIOX/Li-metal cells were examined at current rates of 33.3mA/g (0.05C) and 666mA/g (1C) for voltages of 0 to 3V over 50 cycles (Fig. 2). In addition, electronic and structural changes were microscopically analyzed by TEM/STEM/EELS and 57Fe Mӧssbauer spectroscopy. 

  

 

  Figure 2. Charge-discharge curves at 666 mA/g between 0 and 3.0 V. Inset shows the cycle-life performance.  

  Results showed that L-BIOX exhibited a high potential as an Fe3+/Fe0conversion anode material. Its capacity was significantly higher than the conventional carbon materials. Notably, the presence of minor components of Si and P in the original L-BIOX nanometric particles resulted in specific and well-defined electrode architecture. Since Fe-based electrochemical center is embedded in Si/P-based amorphous texture, an undesirable coagulation of Fe-based center is prevented. 

  Takada and colleagues proposed a unique approach to develop new electrode materials for Li-ion battery. This is an example showing that the iron oxides of bacterial origin are an unexplored frontier in solid-state chemistry and materials science. 

  Explore further: Research and applications of iron oxide nanoparticles  

  More information: "Bacterial Nanometric Amorphous Fe-Based Oxide: A Potential Lithium-Ion Battery Anode Material." Hideki Hashimoto, Genki Kobayashi, Ryo Sakuma, Tatsuo Fujii, Naoaki Hayashi, Tomoko Suzuki, Ryoji Kanno, Mikio Takano, and Jun Takada. ACS Applied Materials & Interfaces 2014 6 (8), 5374-5378. DOI: 10.1021/am500905y 

  Journal reference: ACS Applied Materials and Interfaces  

  http://phys.org/news/2014-06-bacterial-nanometric-amorphous-fe-based-oxide.html 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899