联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Hybrid indium–lithium a...
Scientists make atoms-th...
清华材料学院在超长寿命高...
低介电常数微波介质陶瓷基...
热释电红外传感器的成本优...
Researchers produce firs...
Nanoscale printing break...
钙钛矿微型激光器研究进展
无溶剂石墨烯重防腐涂料研...
综述:甲醇制烯烃反应中SA...
New study on graphene-wr...
Self-healing catalysts m...
锂金属负极稳定技术解析
南开大学参与新材料和可穿...
超灵敏脉搏传感器问世 提...
现在位置:首页>新闻动态>科技信息
Nanorockets now available with brakes and a steering wheel
2017-09-08 16:27:19 | 【 【打印】【关闭】

 

Credit: Radboud University

  Tiny machines like nanorockets are ideal candidates for drug delivery in the human body. Chemists at Radboud University now demonstrate the first complete movement regulation of a nanorocket, by providing temperature responsive brakes. An interesting feature for practical applications, since temperature sensitivity enables the rocket to stop in diseased tissues where temperatures are higher. Nature Chemistry publishes their results on December 12.

  The soft nanosystems that the bio-organic chemists at Radboud University work with self assemble, which means that they spontaneously form functional units. This allows the nanorockets to change shape, making them ideal candidates for containing cargo like medicine. 'Our biggest challenge is to provide our nanorockets with various functionalities', says Daniela Wilson, head of Radboud University's Bio-organic chemistry department and Nanomedicine theme leader 'We now demonstrate the first molecularly built brake system, enabling the rockets to start and stop at desired locations.'

  Temperature responsive brakes 

  The brakes consist of brushes made of polymers – long chains of responsive units – that grow onto the surface of the nanorockets. These brushes swell or collapse in response to the environmental temperature and in this way regulate fuel access to the rocket; in this case H2O2, hydrogen peroxide. Their sensitivity is high, as is shown by the fact that the brushes immediately collapse at a temperature of 35 degrees Celsius or higher, making the machine stop. 'This all happens without affecting the catalytic activity or the shape of the nanorocket', explains Wilson. 'Therefore, nanorockets equipped with this valve system are able to move with great efficiency in water, even at low concentrations of fuel.'

  Magnetic field acts as steering wheel 

  In another publication in Advanced Materials, Wilson and colleagues show how low magnetic fields can act as a steering wheel for the nanorockets. By growing magnetic metallic nickel into the core of the rockets, magnetic field can be used to guide and steer the rockets into desired directions.

  But, there's always room for improvement. Wilson: 'What would be even more interesting than temperature responsive brakes, is a system that responds to light. This would allow us to start or stop a nanorocket by shining a laser light on it. Furthermore, even though our nanorockets are not toxic to living cells, they are not completely biodegradable yet. And of course that is one of the prerequisites for their use as medicine carriers in the body. These are only some examples of the next challenges for our group!'

  Explore further: Nanovesicles in predictable shapes 

  More information: Yingfeng Tu et al. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation, Nature Chemistry (2016). DOI: 10.1038/nchem.2674 

  Journal reference: Nature Chemistry   Advanced Materials   

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899