联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
科技信息
Low-cost wearables manuf...
Researchers develop 3-D-...
硫化钴能用来制作超级电容
青岛能源所在石墨炔能源存...
二维非铅钙钛矿动力学机理...
Scientists fine-tune sys...
Amorphous diamond synthe...
化学耦合的硫化镍和碳空心...
全无机钙钛矿光电探测器动...
科研人员提出纳米催化医学...
Newly-discovered semicon...
Molecular nanoparticles ...
碳纳米点固态高效发光新方法
基于甲胺气体的钙钛矿薄膜...
新型镁电池可使储能技术更...
现在位置:首页>新闻动态>科技信息
Ruthenium rules for new fuel cells
2017-06-30 09:14:57 | 编辑: | 【 【打印】【关闭】

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene. Credit: Chris Zhang/Rice University

  Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

  Catalysts that drive the oxygen reduction reaction that lets fuel cells turn chemical energy into electricity are usually made of platinum, which stands up to the acidic nature of the cell's charge-carrying electrolyte. But platinum is expensive, and scientists have searched for decades for a suitable replacement.

  The ruthenium-graphene combination may fit the bill, said chemist James Tour, whose lab developed the material with his colleagues at Rice and in China. In tests, its performance easily matched that of traditional platinum-based alloys and bested iron and nitrogen-doped graphene, another contender.

  A paper on the discovery appears in the Americn Chemical Society journal ACS Nano.

  "Ruthenium is often a highly active catalyst when fixed between arrays of four nitrogen atoms, yet it is one-tenth the cost of traditional platinum," Tour said. "And since we are using single atomic sites rather than small particles, there are no buried atoms that cannot react. All the atoms are available for reaction."

  Spreading single ruthenium atoms across a sheet of graphene, the atom-thick form of carbon, turned out to be fairly straightforward, Tour said. It involved dispersing graphene oxide in a solution, loading in a small amount of ruthenium and then freeze-drying the new solution and turning it into a foam.

  Baking that at 750 degrees Celsius (1,382 degrees Fahrenheit) in the presence of nitrogen and hydrogen gas reduced the graphene and locked nitrogen atoms to the surface, providing sites where ruthenium atoms could bind.

  Materials made at higher and lower temperatures weren't as good, and those made at the proper temperature but without either ruthenium or nitrogen proved the quality of the reaction depended on the presence of both.

  The material showed excellent tolerance against methanol crossover and carbon monoxide poisoning in an acidic medium, both of which degrade the efficiency of fuel cells; such degradation is a persistent problem with traditional platinum fuel cells.

  Explore further: Cobalt atoms on graphene a powerful combo 

  More information: "Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium" ACS Nano (2017). pubs.acs.org/doi/abs/10.1021/acsnano.7b02148  

  Journal reference: ACS Nano  

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899