联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
清华大学在力学结构超材料...
科学家发明光催化水裂解新...
摩擦/力致发光研究取得进展
Physicists uncover why n...
New photodetector could ...
科学家为设计手性发光材料...
二维本征铁磁半导体研究获...
3D打印材料可磁化形变
Nobarrier to application...
Turbocharge for lithium ...
层状钒酸钾K0.5V2O5用于非...
石墨烯等离激元寿命的新突破
西安交大多模式微纳平台实...
The physics of better ba...
Research shows graphene ...
现在位置:首页>新闻动态>科技信息
Researchers create very small sensor using 'white graphene'
2018-01-19 16:20:54 | 【 【打印】【关闭】


Credit: Delft University of Technology

  Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors by suspending a two-dimensional sheet of hexagonal boron nitride (h-BN), or 'white graphene' over small holes in a silicon substrate. This innovation could lead to extremely small gas and pressure sensors for future electronics.

  Hexagonal boron nitride (h-BN) is an interesting material with a honeycomb lattice structure similar to that of graphite. But while graphite conducts electricity, while h-BN acts as an insulator. This property makes h-BN popular as a high-end lubricant, especially in industrial applications where electrical conductivity is undesirable. Since h-BN has the added benefit of being chemically and thermally more stable than graphite, it is also used in harsh environments such as space, for example, in deep ultraviolet applications.

  Sticky stuff 

  While layers of the two-dimensional material graphene can be exfoliated from graphite with sticky tape, creating single layers of h-BN is much more difficult. The reason for this is that the layers that make up h-BN 'stick' to one another—and other materials—much more strongly than layers of graphene do. Thus, not many researchers have been able to study the properties of h-BN as a 2-D material until now. "There are only two or three institutions in the world that can produce single, two-dimensional layers of white graphite, and the University of Cambridge is one of them," said lead author Santiago J. Cartamil-Bueno. "This project is a success thanks to our effective collaboration with them."

  Using a technique called chemical vapour deposition, researchers at the University of Cambridge grew a one-atom-thick sheet of h-BN, or 'white graphene," onto a piece of iron foil. They then mailed it to TU Delft in The Netherlands. There, through a series of steps, the Delft researchers transferred the sheet of transparent white graphene onto a silicon substrate containing tiny circular cavities. By doing so, they created microscopic 'drums". These drums function as mechanical resonators and could be used as infinitesimal gas or pressure sensors, for instance in mobile phones.

  Cleaning the drums 

  While creating the h-BN drums was a significant challenge in itself, this project posed another, even bigger challenge. As a result of the steps needed to transfer the monoatomic sheet onto the silicon substrate, the drums were contaminated with a number of polymers. Common contaminations such as this are undesirable since they change the properties of the sensors. The result is that all of the sensors may behave slightly differently. "In order to outperform the normal sensors in the market, however, it is important that all 2-D sensors behave in exactly the same way," Cartamil-Bueno explains.

  The Delft researchers found a solution: Using ozone gas, they managed to clean the drums. The aggressive gas removed all of the organic polymers. However, traces of PMMA, a polymer with inorganic components, were left behind on the resonators. "Fortunately, this problem can be solved by only using organic substrates while transferring the sheet of white graphite onto the cavities," says Cartamil-Bueno. Thus, the Delft researchers have provided proof of principle for the fabrication of incredibly small sensors for future electronics.

  Explore further: Graphene balloons show their colors 

  More information: Mechanical characterization and cleaning of CVD single-layer h-BN resonators, DOI: 10.1038/s41699-017-0020-8   

  Provided by: Delft University of Technology 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899