联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Hybrid indium–lithium a...
Scientists make atoms-th...
清华材料学院在超长寿命高...
低介电常数微波介质陶瓷基...
热释电红外传感器的成本优...
Researchers produce firs...
Nanoscale printing break...
钙钛矿微型激光器研究进展
无溶剂石墨烯重防腐涂料研...
综述:甲醇制烯烃反应中SA...
New study on graphene-wr...
Self-healing catalysts m...
锂金属负极稳定技术解析
南开大学参与新材料和可穿...
超灵敏脉搏传感器问世 提...
现在位置:首页>新闻动态>科技信息
Hands-off approach to silicon chips
2017-09-08 16:26:57 | 【 【打印】【关闭】

 

Figure: Microwave Microscope visualizes 3D structures of atomically thin phosphorus layers buried 5-15 nm below a silicon surface. Credit: Imperial College London

  The possibility of looking inside silicon chips to see their tiny working parts, without damaging the chips, is a step closer thanks to an international team led by scientists at the LCN.

  The group at the LCN, led by Dr Neil Curson, have shown that they can generate pictures of tiny three-dimensional components made from phosphorus atoms, that are completely invisible to all other imaging technologies.

  Remarkably, the pictures of these components were obtained despite the fact that the components were the size of only a few tens of atoms, were atomically thin and were buried under the surface of the chip. An accurate quantitative determination of the location of the buried components was obtained, along with certain electrical properties. This breakthrough is published in Science Advances.

  The components that were studied, including a three-dimensional criss-cross of metallic phosphorus stripes, were designed and manufactured by LCN PhD student Alex Kölker. He used a super-sharp metal needle to write patterns in a single layer of hydrogen atoms that lay on the surface of a silicon chip, creating a template of a desired shape. By causing a chemical reaction to happen between the surface of the chip and phosphine gas, phosphorus atoms were written into the surface, in the shape of the template. The phosphorus structures were then buried with more silicon to complete the device.

  A recently developed scanning microwave microscope was used to take pictures of the components, obtained with our collaborators at Johannes Kepler University, led by Georg Gramse, and by Keysight Technologies (Austria), Paul Scherrer Institut, ETH Zürich and EPF Lausanne (Switzerland). The microscope works by focussing microwaves (like those from a microwave oven), to the end of a metal tip which is pushed against the surface of the chip. The microwaves are fired into chip, subsequently bouncing back from the buried components, measured, and used to construct a picture.

  According to Dr Curson "The work is potentially of global significance because silicon chips are becoming so sophisticated and intricate that taking snapshots of their smallest working parts is incredibly difficult and time consuming, and currently involves destroying the chip. If we could easily see all components of a chip, in a non-destructive manor, it would be a game-changer. What we have done is a big step towards just that. Such technologies are also becoming important for governments who are interested in knowing what is inside the foreign electronics they are using!"

  "Another important application of our imaging technology is in assisting in the fabrication of phosphorus-in-silicon quantum computers, which have the potential to revolutionise computing completely, if realised."

  Dr Ferry Kienberger from Keysight Technologies says "Our company sees this work as a major breakthrough in demonstrating that scanning microwave microscopy is the way forward for the characterisation of the next generation of electrical devices and quantum components in silicon."

  The capabilities demonstrated here are transformative for non-invasive diagnostics of atomic-scale electric components that will form the next generation of "classical" and quantum devices.

  Explore further: Single-atom transistor is 'perfect' 

  More information: Georg Gramse et al. Nondestructive imaging of atomically thin nanostructures buried in silicon, Science Advances (2017). DOI: 10.1126/sciadv.1602586 

  Journal reference: Science Advances 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899