联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Hybrid indium–lithium a...
Scientists make atoms-th...
清华材料学院在超长寿命高...
低介电常数微波介质陶瓷基...
热释电红外传感器的成本优...
Researchers produce firs...
Nanoscale printing break...
钙钛矿微型激光器研究进展
无溶剂石墨烯重防腐涂料研...
综述:甲醇制烯烃反应中SA...
New study on graphene-wr...
Self-healing catalysts m...
锂金属负极稳定技术解析
南开大学参与新材料和可穿...
超灵敏脉搏传感器问世 提...
现在位置:首页>新闻动态>科技信息
Building a safer lithium-ion battery
2017-09-08 16:26:56 | 【 【打印】【关闭】

  Lithium-ion batteries have become an indispensable power source for our proliferating gadgets. They have also, on occasion, been known to catch fire. To yield insight into what goes wrong when batteries fail and how to address the safety hazard, scientists report in the journal ACS Sensors that they have found a potential way to track lithium ions as they travel in a battery.

  In essence, rechargeable batteries work by shuttling ions back and forth between electrodes through an electrolyte. Often, failure occurs when lithium ions stray from their intended path. To better understand how this happens, scientists have looked for ways to track the ions. Several methods have been proposed, but so far, they have been limited for various reasons, including poor spatial resolution. Fluorescence microscopy, which is often used to probe materials and biological systems, could potentially fill this void. But first, scientists would need to find a fluorescent label that is sensitive to lithium ions. Randall H. Goldsmith and colleagues at the University of Wisconsin-Madison set out to do this.

  The researchers worked with 2-(2-hydroxyphenyl)naphthoxazole, or HPNO, a molecule that fluoresces when it attaches to lithium ions. They added a "visible pump" to help prevent photobleaching and other damage. In a battery-like environment, the system could image and track lithium ions. The researchers note that their next step would be to test the molecule in a more realistic analog of a battery cell.

  Explore further: Scientists identify chemical causes of battery 'capacity fade' 

  More information: "Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics" ACS Sensors pubs.acs.org/doi/abs/10.1021/acssensors.7b00087 

  Provided by: American Chemical Society  

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899