联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
科技信息
Low-cost wearables manuf...
Researchers develop 3-D-...
硫化钴能用来制作超级电容
青岛能源所在石墨炔能源存...
二维非铅钙钛矿动力学机理...
Scientists fine-tune sys...
Amorphous diamond synthe...
化学耦合的硫化镍和碳空心...
全无机钙钛矿光电探测器动...
科研人员提出纳米催化医学...
Newly-discovered semicon...
Molecular nanoparticles ...
碳纳米点固态高效发光新方法
基于甲胺气体的钙钛矿薄膜...
新型镁电池可使储能技术更...
现在位置:首页>新闻动态>科技信息
Breathable, wearable electronics on skin for long-term health monitoring
2017-07-18 09:11:57 | 编辑: | 【 【打印】【关闭】

 

The diagram at top illustrates the structure of gold nanomesh conductors laminated onto the skin surface. The nanomesh, constructed from polyvinyl alcohol (PVA) nanofibers and a gold (Au) layer, adheres to the skin when sprayed with water, dissolving the PVA, as depicted in the enlarged diagrams at bottom. Credit: 2017 Someya Laboratory.

  A hypoallergenic electronic sensor can be worn on the skin continuously for a week without discomfort, and is so light and thin that users forget they even have it on, says a Japanese group of scientists. The elastic electrode constructed of breathable nanoscale meshes holds promise for the development of noninvasive e-skin devices that can monitor a person's health continuously over a long period.

  Wearable electronics that monitor heart rate and other vital health signals have made headway in recent years, with next-generation gadgets employing lightweight, highly elastic materials attached directly onto the skin for more sensitive, precise measurements. However, although the ultrathin films and rubber sheets used in these devices adhere and conform well to the skin, their lack of breathability is deemed unsafe for long-term use: dermatological tests show the fine, stretchable materials prevent sweating and block airflow around the skin, causing irritation and inflammation, which ultimately could lead to lasting physiological and psychological effects.

  "We learned that devices that can be worn for a week or longer for continuous monitoring were needed for practical use in medical and sports applications," says Professor Takao Someya at the University of Tokyo's Graduate School of Engineering whose research group had previously developed an on-skin patch that measured oxygen in blood.

  In the current research, the group developed an electrode constructed from nanoscale meshes containing a water-soluble polymer, polyvinyl alcohol (PVA), and a gold layer—materials considered safe and biologically compatible with the body. The device can be applied by spraying a tiny amount of water, which dissolves the PVA nanofibers and allows it to stick easily to the skin—it conformed seamlessly to curvilinear surfaces of human skin, such as sweat pores and the ridges of an index finger's fingerprint pattern.

An array of nanomesh conductors attached to a fingertip, top, and a scanning electron microscope (SEM) image of a nanomesh conductor on a skin replica, bottom. Credit: 2017 Someya Laboratory.

  The researchers next conducted a skin patch test on 20 subjects and detected no inflammation on the participants' skin after they had worn the device for a week. The group also evaluated the permeability, with water vapor, of the nanomesh conductor—along with those of other substrates like ultrathin plastic foil and a thin rubber sheet—and found that its porous mesh structure exhibited superior gas permeability compared to that of the other materials.

  Furthermore, the scientists proved the device's mechanical durability through repeated bending and stretching, exceeding 10,000 times, of a conductor attached on the forefinger; they also established its reliability as an electrode for electromyogram recordings when its readings of the electrical activity of muscles were comparable to those obtained through conventional gel electrodes.

The electric current from a flexible battery placed near the knuckle flows through the conductor and powers the LED just below the fingernail. Credit: 2017 Someya Laboratory.

  "It will become possible to monitor patients' vital signs without causing any stress or discomfort," says Someya about the future implications of the team's research. In addition to nursing care and medical applications, the new device promises to enable continuous, precise monitoring of athletes' physiological signals and bodily motion without impeding their training or performance.

  Explore further: Novel e-skin may monitor health, vital signs 

  More information: Akihito Miyamoto et al, Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes, Nature Nanotechnology (2017). DOI: 10.1038/nnano.2017.125   

  Journal reference: Nature Nanotechnology  

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899