联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
科技信息
Low-cost wearables manuf...
Researchers develop 3-D-...
硫化钴能用来制作超级电容
青岛能源所在石墨炔能源存...
二维非铅钙钛矿动力学机理...
Scientists fine-tune sys...
Amorphous diamond synthe...
化学耦合的硫化镍和碳空心...
全无机钙钛矿光电探测器动...
科研人员提出纳米催化医学...
Newly-discovered semicon...
Molecular nanoparticles ...
碳纳米点固态高效发光新方法
基于甲胺气体的钙钛矿薄膜...
新型镁电池可使储能技术更...
现在位置:首页>新闻动态>科技信息
Carbon nanotubes turn electrical current into light-matter quasi-particles
2017-07-20 10:28:10 | 编辑: | 【 【打印】【关闭】

Carbon nanotubes turn electrical current into light-matter quasi-particles

Schematic illustration of the new field-effect transistor device developed by researchers at Heidelberg and St Andrews. The transistor converts electrical current into light-matter quasi-particles and is based on single walled carbon nano-tubes that are embedded between two metallic mirrors forming an optical micro-cavity. Credit: University of St Andrews

    Material scientists and physicists from Heidelberg University (Germany) and the University of St Andrews (Scotland) have demonstrated electrical generation of hybrid light-matter particles, so-called exciton-polaritons, by using field-effect transistors with semiconducting carbon nanotubes integrated in optical micro-cavities.

    The extraordinary stability of these transistors enabled electrical pumping at unprecedented rates, which paves the way for electrically pumped lasers with solution-processed and carbon-based semiconductors. As the emission of these light sources can be tuned across a wide range of the near-infrared spectrum, this work holds particular promise for applications in telecommunications.

These results, published in Nature Materials, are the latest outcome of a fruitful cooperation between Professor Dr Jana Zaumseil (Heidelberg) and Professor Dr Malte C. Gather (St Andrews).

    Research on optoelectronic devices using carbon-based and organic materials has led to a variety of novel applications, such as organic light-emitting diodes for energy efficient, bright and high-resolution smartphones displays and TVs.

However, despite the rapid development in this area, electrically pumped lasing from organic materials remains elusive. One major challenge is to generate the high pumping rates required for lasing. Recently, so called polariton lasers have received a lot of attention as they provide a new and potentially more efficient way to generate laser-like light.

    Instead of relying purely on photons as in a conventional laser, the polariton laser uses photons that are strongly coupled to the excited states of the material. This coupled nature of the polaritons can facilitate the generation of laser-like light if high enough current densities could be achieved.

    Previously the same team showed that it is possible to form polaritons in semiconducting carbon nanotubes at room temperature by external optical excitation. In their latest work, the researchers now found a way to generate polaritons electrically.

To achieve this, they developed a carbon nanotube-based light-emitting field-effect transistor that was embedded between two metal mirrors in close proximity acting as an optical micro-cavity. In such a device the current flow is perpendicular to the optical feedback, which allows both to be optimized independently.

    Because of the extreme stability and high conductivity provided by the carbon nanotubes in this device, current densities orders of magnitude above any previously reported values were achieved. Calculations by PhD student Arko Graf, one of the first authors of the study, show that with further improvements to the device architecture, electrically pumped polariton lasing will be within realistic reach.

    Professor Zaumseil explains: "Besides the potential generation of laser light, these devices can also be used to reversibly tune between strong and weak light-matter coupling, which opens a route to more fundamental investigations."

Professor Gather added: "Our curiosity to understand what happens when we combine tailored nanomaterials with high-quality photonic structures is really what drives this collaboration."

The paper "Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities" by A. Graf, M. Held, Y. Zakharko, L. Tropf, M.C. Gather and J. Zaumseil is published online in the 17 July 2017 issue of Nature Materials.

     Explore further: Carbon nanotubes couple light and matter

    More information: Arko Graf et al, Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities, Nature Materials (2017). DOI: 10.1038/nmat4940

    Journal reference: Nature Materials

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899