联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
科技信息
Low-cost wearables manuf...
Researchers develop 3-D-...
硫化钴能用来制作超级电容
青岛能源所在石墨炔能源存...
二维非铅钙钛矿动力学机理...
Scientists fine-tune sys...
Amorphous diamond synthe...
化学耦合的硫化镍和碳空心...
全无机钙钛矿光电探测器动...
科研人员提出纳米催化医学...
Newly-discovered semicon...
Molecular nanoparticles ...
碳纳米点固态高效发光新方法
基于甲胺气体的钙钛矿薄膜...
新型镁电池可使储能技术更...
现在位置:首页>新闻动态>科技信息
Tripling the efficiency of solar-based hydrogen fuel generation with metallic nanostructures that slow down light
2017-08-30 09:59:47 | 编辑: | 【 【打印】【关闭】

 

A nanostructured metamaterial with a sunflower-like arrangement can be immersed in water to generate hydrogen gas with superb efficiency. Credit: WILEY-VCH Verlag GmbH & Co.

  Hydrogen gas, an important synthetic feedstock, is poised to play a key role in renewable energy technology; however, its credentials are undermined because most is currently sourced from fossil fuels, such as natural gas. A KAUST team has now found a more sustainable route to hydrogen fuel production using chaotic, light-trapping materials that mimic natural photosynthetic water splitting.

  The complex enzymes inside plants are impractical to manufacture, so researchers have developed photocatalysts that employ high-energy, hot electrons to cleave water molecules into hydrogen and oxygen gas. Recently, nanostructured metals that convert solar electrons into intense, wave-like plasmon resonances have attracted interest for hydrogen production. The high-speed metal plasmons help transfer carriers to catalytic sites before they relax and reduce catalytic efficiency.

  Getting metal nanoparticles to respond to the entire broadband spectrum of visible light is challenging. "Plasmonic systems have specific geometries that trap light only at characteristic frequencies," explains Andrea Fratalocchi, who led the research. "Some approaches try to combine multiple nanostructures to soak up more colors, but these absorptions take place at different spatial locations so the sun's energy is not harvested very efficiently."

  Fratalocchi and his team devised a new strategy using metal nanostructures known as epsilon-near-zero (ENZ) metamaterials that grow with random, fractal needles similar to a tiny pine tree. Inside the cavities formed by the protruding metal branches, the propagation of light slows to a near standstill. This enables the ENZ substance to squeeze all visible light colors to the same nanometer-scale locations.

  However, optimizing the ENZ material for hydrogen generation proved a protracted process of months. Not every needle-like structure works the same way, which meant the team had to fine tune all fabrication parameters to find the correct disorder for efficient reactions. Then, choosing semiconducting titanium dioxide as a substrate to collect hot electrons required crystals with extremely high purity. Finally, the concentration and position of platinum nanoparticles used to catalytically split water molecules needed to be precisely controlled, depositions that are difficult with ENZ's complex geometry.

  The result was worth the perseverance: experiments revealed the ENZ photocatalyst used broadband light to generate hot carriers within a narrow 10-nm interfacial region for an overall 300% gain in efficiency.

  "Due to the possibility of controlling their absorption, the ENZ nanostructures are ideal candidates for solar-energy harvesting," says Fratalocchi. "We recently engineered an industrial prototype with impressive efficiency, which makes us very optimistic about the future possibilities of this technology."

  Explore further: Solar material for producing clean hydrogen fuel 

  More information: Yi Tian et al. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts, Advanced Materials (2017). DOI: 10.1002/adma.201701165   

  Journal reference: Advanced Materials 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899