联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
科技信息
Low-cost wearables manuf...
Researchers develop 3-D-...
硫化钴能用来制作超级电容
青岛能源所在石墨炔能源存...
二维非铅钙钛矿动力学机理...
Scientists fine-tune sys...
Amorphous diamond synthe...
化学耦合的硫化镍和碳空心...
全无机钙钛矿光电探测器动...
科研人员提出纳米催化医学...
Newly-discovered semicon...
Molecular nanoparticles ...
碳纳米点固态高效发光新方法
基于甲胺气体的钙钛矿薄膜...
新型镁电池可使储能技术更...
现在位置:首页>新闻动态>科技信息
Molecular nanoparticles lead to major advancement in the development of solar cells
2017-09-06 10:27:59 | 编辑: | 【 【打印】【关闭】

 

Schematic illustration of the generation of two photons of lower energy (½h) when the organic-inorganic bismuth halide is under illumination of a high-energy photon (h). The two clusters are the subunits of the bulk crystalline material prepared via solution processing. The generation of two photons from one involves the energy transfer between two neighbouring clusters and two relaxation processes. Credit: University of St Andrews

  A new study by researchers at the University of St Andrews could herald a major advancement in the development of solar cells.

  The efficient use of solar energy for electricity generation is considered vital to reducing carbon dioxide emissions, a cause of global warming.

  The St Andrews research, led by Professor John Irvine, has demonstrated that the atomically precise nanoparticles known as nanoclusters or molecular nanoparticles are capable of cutting a high-energy photon into two lower-energy ones, which could benefit the development of the third-generation photovoltaics, the direct conversion of light into electricity at the atomic level.

  The findings are published today (1 August 2017) in the scientific journal Nature Communications.

  The efficiency of an ideal single junction solar cell is limited to 30 per cent to balance the light absorption and the energy of the excited electro-hole pairs. The cutting of a high-energy photon into two photons of nearly half energy could offer the prospect of exceeding the efficiency limit as it will increase the number of charge carriers and efficient use of high-energy light rays in the solar spectrum.

  The generation of two low-energy photons from a high-energy one has been observed in quantum dots and lanthanide ions due to the confinement of excitons and the transport of charge carriers from neighbouring ones.

  Now the St Andrews-led team has demonstrated the nanoclusters in organic-inorganic hybrid bismuth halide can also be used for the splitting of a high-energy photon with the nanoclusters and this could bring advances in solar cells as they are arranged in a bulk crystalline material that can be processed from solution.

  Professor Irvine said: "It is expected that this study would stimulate the study on materials with nanoclusters or low-dimensional organic-inorganic hybrid materials for photonic devices and this atomic precise subunit in crystalline materials could ease the preparation and processing of nano-sized particles as they are controlled by the intrinsic crystal structure of the material."

  Explore further: New material holds promise to create more flexible, efficient technologies 

  More information: Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters. Nature Communications. DOI: 10.1038/s41467-017-00261-9 

  Journal reference: Nature Communications 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899