联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
BNEF:2018年清洁能源发展...
科学家研制出可拉伸扩展的...
二维材料力学性能首次测出
纳米材料生物响应研究取得...
Shape-shifting organic c...
我国2020年研制出时速六百...
最新研究:在硅电极上加入...
稳定铝离子电池: 非石墨体...
手性纳米颗粒为激光雷达带...
Engineers create new arc...
纳米绿色印刷:基础创新引...
3美学者运用“白色石墨烯...
纳米光催化材料做的窗帘可...
体细胞克隆猴为什么这样重...
Hybrid indium–lithium a...
现在位置:首页>新闻动态>科技信息
Closing the loop on battery recycling
2018-01-30 09:07:23 | 【 【打印】【关闭】

   

  The number of lithium-ion batteries has skyrocketed. But what will happen to them after they die? Argonne’s ReCell model examines how much money and energy could be saved if we recycle these batteries. Credit: Shutterstock/Romaset  

  A novel model developed at the U.S. Department of Energy's (DOE) Argonne National Laboratory allows industry, the Department and others to gauge the impact of recycling batteries in electric vehicles. It could further energize this market.  

  "Argonne has a long track record of expertise in battery research and development, and now we have added the ability to examine every step along the way, from manufacturing to recycling," said Argonne's Jeff Spangenberger, the project leader. 

  From cathodes to anodes and electrolytes, Argonne's understanding of batteries, combined with ReCell, a closed-loop battery recycling model, offers preliminary estimates of total costs as well as environmental impacts such as carbon dioxide emissions. The model breaks down each process from when a battery leaves the factory to when it is recycled. 

  Argonne's ReCell model can provide information to manufacturers up front, so those manufacturers can determine life cycle costs with precision and provide batteries to consumers with minimal environmental and economic impacts. Argonne's researchers have designed ReCell to be versatile and adapt to the challenges that recycling of lithium ion batteries present, such as differing battery chemistries and formats. 

  "ReCell helps determine where we need to focus our efforts. This results in more efficient research and expedites the process of reaching our life cycle, or circular, goal," said Spangenberger, who is also a recent recipient of a DOE Technology Commercialization Fund award. 

  The model includes three basic recycling technologies: 

  • Extracting metals with heat (pyrometallurgical)
  • Extracting metals with liquids (hydrometallurgical)
  • Direct recycling

  Preliminary findings estimate that a cell with a recycled cathode could cost 5 percent, 20 percent and 30 percent less than a new cell using pyrometallurgy, hydrometallurgy and direct recycling routes, respectively, according to estimates from Argonne's Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model recycling parameters. That same cell could consume 10 percent, 20 percent and 30 percent less energy, respectively.  

  Additionally, the model considers transportation-related cost and environmental factors, which can help steer the development of a recycling infrastructure. For instance, is it more effective to have one large central recycling center or several smaller centers located throughout the country? Preliminary results from the ReCell model show how a simple change in shipping classification for end-of-life batteries could potentially change a recycled cathode's cost from 30 percent less than a new cathode to one that only breaks even. 

  Information provided by ReCell will become increasingly important as thousands of batteries from vehicles sold over the last decade reach their end of life, according to Spangenberger, who added that plug-in electric vehicle (PEV) sales in the U.S. more than doubled in the last four years. Currently, PEVs comprise only 1 percent of new vehicle sales. But by 2025, annual sales of PEVs will exceed 1.2 million vehicles, reaching more than 7 percent of annual vehicle sales. 

  The model, developed by Spangenberger and Qiang Dai, an Argonne postdoctoral fellow, also incorporates the work of Linda Gaines, a transportation systems analyst and battery recycling expert. This work, Gaines noted, could also help extend limited supplies of lithium, cobalt and other valuable elements. Ultimately, it could also reduce U.S. dependence on foreign resources and enhance national security. 

  ReCell leverages Argonne's patented GREET life-cycle model and Battery Performance and Cost, or BatPaC, a lithium-ion battery performance and cost model for electric-drive vehicles. 

  GREET, developed by Michael Wang and his team, is a free program that allows users to analyze technologies over an entire life cycle—from well to wheels—and from raw material mining to vehicle disposal. 

  BatPaC, developed by Paul Nelson, is also a free program that captures the interplay between design and cost of lithium-ion batteries for transportation applications.  

  Explore further: Graphene unlocks the promise of lithium sulfur batteries  

  Provided by Argonne National Laboratory  

  Sourcehttps://techxplore.com/news/2018-01-loop-battery-recycling.html 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899