联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
石墨烯包覆的液态金属液滴...
二维体系中高密度固液共存...
三维打印构建骨/软骨一体...
Closing the loop on batt...
BNEF:2018年清洁能源发展...
科学家研制出可拉伸扩展的...
二维材料力学性能首次测出
纳米材料生物响应研究取得...
Shape-shifting organic c...
我国2020年研制出时速六百...
最新研究:在硅电极上加入...
稳定铝离子电池: 非石墨体...
手性纳米颗粒为激光雷达带...
Engineers create new arc...
纳米绿色印刷:基础创新引...
现在位置:首页>新闻动态>科技信息
New testing method improves composites understanding
2018-01-31 16:08:07 | 【 【打印】【关闭】

  The Fraunhofer Institute for Structural Durability and System Reliability LBF has developed a new testing method which combines mechanical and radiographic examination. 

  The method can be used to characterize materials, and reportedly makes it easier to assess inclusions or damage to raw material based on their influence on the durability and service life. Fraunhofer LBF says this can lead to better understanding of material behavior and material characterization. 

  Using the method, the tested component remains in the x-ray equipment during the mechanical load. As a result, the exact location in the material can be observed and analyzed throughout the entire load duration. Previous concepts were not able to achieve the necessary precision of just a few micrometers with the alternating insertion and removal of the sample with intermittent radiological examination, Fraunhofer says. 

  ‘Understanding how damage occurs to the material of a component while is placed under realistic mechanical loads is one of the key questions in materials science, and was previously not possible,’ said Oliver Schwarzhaupt, scientific employee in function-integrated lightweight construction at Fraunhofer LBF. ‘The new process represents a huge advance in regards to detail resolution and precision, as well as the retrievability of possible causes of damage.’ 

  While scientists subject the component to a mechanically dynamic service life load, they can use the radiological examination in this cycle to observe and illustrate the occurrence and progress of the damage. With forces in the test machine of up to 250 kilonewtons, even high-strength components made of carbon fiber like those used in aircraft construction can be examined, the scientists say. ‘There is still a great need for examination to understand the failure mechanisms in carbon fiber-reinforced plastics,’ said Schwarzhaupt. 

  Damage origin 

  With most modern imaging processes, cracks and damage in material can be illustrated vividly and in three dimensions, opening up many possibilities for analysis. With the use of a microfusion pipe, the x-ray equipment in the Fraunhofer LBF has a high resolution capacity of just a few micrometers. In this way it is possible to detect the smallest signs of damage even as it begins to occur, or determine that the slightest irregularities in the material are the point of origin for the damage. In the area of fiber-reinforced plastics in particular, the occurrence of damage on the fiber level can be studied. 

  With this knowledge about the cause of the error and the error sequence, developers, designers, and manufacturers can now improve their materials, components, and manufacturing processes even before a crack is macroscopically visible. ‘Our new concept makes a great contribution on the topic of material understanding and is clearly better able to meet customer-specific requirements in the area of material failures at an early stage,’ ensures Schwarzhaupt. 

  This story is reprinted from material from Fraunhofer, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. 

  Sourcehttps://www.materialstoday.com/carbon-fiber/news/new-testing-method-improves-composites-/ 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899