联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
钠离子电池铁基电极材料研...
上海微系统所在水溶性石墨...
新型有机太阳能电池:将含...
Scalable two-dimensional...
Converting CO2 into usab...
便携传感器让大气中超细微...
白俄罗斯研发出颅骨修补聚...
Li3VO4的可控相变:锂离子...
Optical ceramic meets me...
Scientists take step tow...
多孔碳布结合氮化钒阵列–...
制备出透明可拉伸自驱动触...
Small: 高性能二维介孔硅...
With computation, resear...
Army researchers are aft...
现在位置:首页>新闻动态>科技信息
Mapping nanoscale chemical reactions inside batteries in 3-D
2018-03-05 08:24:44 | 【 【打印】【关闭】

Lithium iron phosphate. Credit: Jordi Cabana

  Researchers from the University of Illinois at Chicago and Lawrence Berkeley National Laboratory have developed a new technique that lets them pinpoint the location of chemical reactions happening inside lithium-ion batteries in three dimensions at the nanoscale level. Their results are published in the journalNature Communications.

  "Knowing the precise locations of chemical reactions within individual nanoparticles that are participating in those reactions helps us to identify how a battery operates and uncover how the battery might be optimized to make it work even better," said Jordi Cabana, associate professor of chemistry at UIC and co-corresponding author on the paper.

  As a battery charges and discharges, its electrodes—the materials where the reactions that produce energy take place—are alternately oxidized and reduced. The chemical pathways by which these reactions take place help determine how quickly a battery becomes depleted.

  Tools available to study these reactions can only provide information on the average composition of electrodes at any given point in time. For example, they can let a researcher know what percentage of the electrode has become permanently oxidized. But these tools cannot provide information on the location of oxidized portions in the electrode. Because of these limitations, it is not possible to tell if reactions are confined to a certain area of the electrode, such as the surface of the material, or if reactions are taking place uniformly throughout the electrode.

  "Being able to tell if there is a tendency for a reaction to take place in a specific part of the electrode, and better yet, the location of reactions within individual nanoparticles in the electrode, would be extremely useful because then you could understand how those localized reactions correlate with the behavior of the battery, such as its charging time or the number of recharge cycles it can undergo efficiently," Cabana said.

  The new technique, called X-ray ptychographic tomography, came about through a partnership between chemists at UIC and scientists at the Advanced Light Source, at Lawrence Berkeley National Laboratory in California. Advanced Light Source scientists developed the instrumentation and measurement algorithms, which were used to help answer fundamental questions about battery materials and behavior identified by the UIC team.

  Together, the two teams used the tomographic technique to look at tens of nanoparticles of lithium-iron phosphate recovered from a battery electrode that had been partially charged. The researchers used a coherent, nanoscale beam of X-rays generated by the high-flux synchrotron accelerator at the Advanced Light Source to interrogate each nanoparticle. The pattern of absorption of the beam by the material gave the researchers information about the oxidation state of iron in the nanoparticles in the X-ray beam. Because they were able to move the beam just a few nanometers over and run their interrogation again, the team could reconstruct chemical maps of the nanoparticles with a resolution of about 11 nanometers. By rotating the material in space, they could create a three-dimensional tomographic reconstruction of the oxidation states of each nanoparticle. In other words, they could tell the extent to which an individual nanoparticle of lithium iron phosphate had reacted.

  "Using our new technique, we could not only see that individual nanoparticles showed different extents of reaction at a given time, but also how the reaction worked its way through the interior of each nanoparticle," Cabana said.

  Explore further: First nanoscale look at how lithium ions navigate a molecular maze to reach battery electrode 

  More information: Young-Sang Yu et al, Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography, Nature Communications (2018). DOI: 10.1038/s41467-018-03401-x  

  Journal reference: Nature Communications 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899