联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
清华大学在力学结构超材料...
科学家发明光催化水裂解新...
摩擦/力致发光研究取得进展
Physicists uncover why n...
New photodetector could ...
科学家为设计手性发光材料...
二维本征铁磁半导体研究获...
3D打印材料可磁化形变
Nobarrier to application...
Turbocharge for lithium ...
层状钒酸钾K0.5V2O5用于非...
石墨烯等离激元寿命的新突破
西安交大多模式微纳平台实...
The physics of better ba...
Research shows graphene ...
现在位置:首页>新闻动态>科技信息
Nanostructuring increases efficiency of metal-free photocatalysts by factor 11
2018-03-07 08:20:45 | 【 【打印】【关闭】
PCN nanolayers under sunlight can split water. Credit: Nannan Meng /Tianjin University

  One of the major challenges of the renewable energy transition is to supply energy even in the absence of sunlight. Hydrogen production by splitting water with the help of sunlight could offer a solution. Hydrogen is a good energy storage medium, and can be used in many ways. However, catalysts are needed to split water. Platinum is often used, but it is rare and expensive. Researchers therefore seek more economical alternatives. Now, a team headed by Dr. Tristan Petit from the HZB, together with colleagues led by Prof. Bin Zhang from Tianjin University, Tianjin, China, has made important progress using a well-known class of metal-free photocatalysts.

  Bin Zhang and his team specialise in the synthesis of polymeric carbon nitrides (PCN) as a catalyst for hydrogen production. The PCN molecules form a structure that can be compared to thin layers of filo pastry dough—tightly packed sheets of this material are packed together. The Chinese chemists have now succeeded in separating the individual sheets from each other by means of a relatively simple two-step heat treatment—the same way that puff pastry separates into individual crispy layers in the oven. The heat treatment produced samples consisting of individual nanolayers with large pores containing different amino groups with specific functionalities.

  Petit and his team investigated a series of these PCN samples at BESSY II. "We were able to determine which amino and oxygenated groups had been deposited in the pores," says Ph.D. student Jian Ren, co-first author of the publication. The researchers analysed how specific amino groups pull electrons to themselves, a particularly favourable property for splitting water, and how new oxygen-based defects were formed.

heat treatment produced samples consisting of individual nanolayers with large pores containing different amino groups with specific functionalities. Credit: Nannan Meng /Tianjin University

  When combined with nickel as a co-catalyst, those samples of nanostructured PCN actually exhibited record-breaking efficiency, 11 times that of normal PCN under visible light irradiation.

  "This demonstrates that PCN is an interesting potential catalyst for solar-to-hydrogen production, approaching the efficiency of inorganic catalysts," says Petit, who is a Volkswagen Foundation Freigeist Fellow. "Furthermore, this work also shows that soft X-ray spectroscopies are essential tools to unravel possible catalytically active sites on photocatalysts."

  Explore further: Ultrathin black phosphorus for solar-driven hydrogen economy 

  More information: Nannan Meng et al, Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production, Energy & Environmental Science (2018). DOI: 10.1039/C7EE03592F    

  Journal reference: Energy & Environmental Science 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899