联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Energy harvester collect...
石墨烯材料生长技术获重大...
“神奇角度”产生超导电性
3D打印可助实现个性化置换...
New view on electron int...
Easy printing of biosens...
清华药学院王戈林课题组发...
我国科学家揭示可指导材料...
非铅钙钛矿光电探测晶体材...
Hydrogen extraction brea...
Nanostructuring increase...
纳米材料间“拉链”性能首...
德国成功研发氮原子大小的...
新疆理化所合成首例碱土金...
Method to predict drug s...
现在位置:首页>新闻动态>科技信息
Advance could enable novel high-performance materials
2018-03-09 08:14:38 | 【 【打印】【关闭】

A lattice design in a repeating crisscross structure. The pattern in which a material’s polymer strips are arranged, according to UW–Madison engineering researchers, can confer added strength and durability. Credit: RODERIC LAKES

  An engineering physics professor at the University of Wisconsin–Madison has created new materials that behave in an unusual way that defies the standard theory engineers use for designing things like buildings, airplanes, bridges and electronic devices.

  It's an advance that could open the door to designing novel materialsfor applications that require high toughness—for example, airplane wings that are more fracture-resistant.

  The classical elasticity theory works well for predicting the behavior of most ordinary materials, including steel, aluminum and concrete, and ensuring structures can withstand mechanical forces without breaking or deforming too much. But for some materials, the theory is limiting.

  Roderic Lakes and graduate student Zachariah Rueger used 3-D printing to make their new polymer lattice materials. Their design—the pattern in which the materials' polymer strips are arranged—is a repeating crisscross structure. When it's twisted or bent, a bar of this polymer lattice is about 30 times stiffer than would be expected based on classical elasticity theory.

  The Wisconsin researchers described their new lattice materials in the journal Physical Review Letters on Feb. 8, 2018.

  Performing measurements in the lab, Lakes determined that the materials' behavior was consistent with Cosserat elasticity, a more descriptive theory of elasticity that takes into consideration the size of the underlying structure in a material.

  "When you have a material with substructure in it, such as some foams, lattices and fiber-reinforced materials, there's more freedom in it than classical elasticity theory can handle," Lakes says. "So we're studying the freedom of materials to behave in ways not anticipated by the standard theory."

  This increased freedom offers a potential path to creating novel materials that are immune to stress concentration; in other words, materials with improved toughness. Such materials would be useful for a variety of applications, including making airplane wings more resistant to cracks.

  If a crack forms in an airplane wing, stress is concentrated around the crack, making the wing weaker. "You need a certain amount of stress to break something, but if there's a crack in it, you can break it with less stress," Lakes says.

  Using the Cosserat theory of elasticity to inform materials design will yield tougher materials in which stresses are distributed throughout the materials differently, according to Lakes.

  These same effects are present in materials such as bone and certain types of foams. However, when engineers make foam for a seat cushion, for example, they don't have much control over the foam's substructure—the tiny bubbles that form and make up the cells inside the foam. As a result, they have limited ability to tailor the Cosserat effects.

  In contrast to foam, the UW–Madison researchers can tune the Cosserat effects in their lattice materials and make them very strong.

  "We developed a material in which we have exceptionally detailed control over the fine structure of ourlattice, and that enabled us to achieve very strong effects when bending and twisting the material," Lakes says.

  Explore further: The shape of things to come for quantum materials? 

  Journal reference: Physical Review Letters  

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899