联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 OA系统
科技信息
柔性离子导电水凝胶
How the use of different...
'GO dough' makes graphen...
Small Methods: 微超级电...
美国西北大学多材料3D打印...
Small Methods: 阳极氧化...
ZnO微球—一种简易的有机...
CsPbBr3微米球:一种高效...
柔性微型机器人可在体内“...
聚电解质生物“墨水”常态...
厚度调控的晶面结同时实现...
新疆理化所含氟碘酸盐非线...
阿尔伯塔大学欲利用纳米硅...
新疆理化所含氟碘酸盐非线...
铁基金属有机骨架材料的最...
现在位置:首页>新闻动态>科技信息
Silicones obtained at low temperatures with the help of air
2019-01-28 10:36:11 | 【 【打印】【关闭】

  Russian scientists have developed a new method for synthesizing para-carboxyplenylsiloxanes, a unique class of organosilicon compounds. The resulting compounds are promising for creating self-healing, electrically conductive, heat- and frost-resistant silicones.

  Organosilicon compounds, especially materials based on silicones, are among the most in-demand products. The ability to withstand incredible thermal and mechanical stress makes it possible to use silicones for sealing and protecting many items in aircraft and rocket construction. The strength and durability of silicones lends them to applications in medicine, food industry, and in many other fields of human life.

  Though many silicone materials have already been created and their fields of application have been found, scientists believe that their usability potential has not been fully realized. This is due to one of the central problems in the modern chemistry of silicones, namely, the synthesis of organosilicon products with a "polar" (-C(O)OH, -OH, -NH2, etc.) functional group in an organic substituent. Such a moiety allows the easy introduction of other substituents, and the ability to tune the compound to repel water or to form stable aqueous emulsions, and to impart other "super-capabilities" to a material. This opens quite unique prospects for subsequent modification of these compounds in order to synthesize new copolymers, self-healing and conductive materials, and compounds for the storage and delivery of drugs and fuels. Just a small modification of a compound would also allow one to solve the problem of low mechanical strength and incompatibility of silicones with polymers, such as polyesters and others.

  With rare exceptions, the classical methods for synthesizing silicones (first monomers, then polymers) cannot realize functional organosilicon substrates. As a rule, these methods are either applicable to a narrow range of substrates or are time-consuming, expensive and involve multiple stages.

  In recent years, there have been an increasing number of publications on the oxidation and functionalization of organic compounds involving molecular oxygen, i.e., a "green," simple and available oxidant. A number of industrially important processes already rely on this approach. However, despite all the advantages, these processes generally feature low selectivity and require drastic conditions (elevated temperature, high pressure, etc.).

  A team of scientists from A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), in collaboration with colleagues from the Russian Federation, used a combination of metallic and organic catalysts to solve these problems. The reaction conditions were softened and high process selectivity was achieved. The reaction occurred with involvement of molecular oxygen in liquid phase and at temperatures slightly above the room temperature, whereas many industrial processes are performed in gas phase under drastic conditions. The method can be scaled to gram amounts in order to produce a required compound.

  "Thus, we suggested a highly efficient method based on aerobic metal- and organo-catalyzed oxidation of starting para-tolylsiloxanes to para-carboxyphenylsiloxanes. This approach is based on 'green,' commercially available, simple and inexpensive reagents, and employs mild reaction conditions," says Dr. Ashot Arzumanyan, the leader and one of the contributors of this study, senior scientist of the K.A. Andrianov Laboratory.

  Furthermore, it has been shown that the suggested method is applicable to the oxidation of organic derivatives (alkylarenes) to the corresponding acids and ketones, as well as hydridosilanes to silanols (and/or siloxanols). The scientists also studied whether materials can be obtained on the basis of para-carboxyphenylsiloxanes, including an analogue of PET, which is used in beverage bottles, fibers for clothes and for technical applications. "The compounds that we obtained open prospects for the creation of self-healing, electrically conductive, heat- and frost-resistant and mechanically strong silicones. They can also serve as a basis for developing new hybrid materials that may find use in catalysis, drug delivery, fuel storage, and in other fields of science, technology and medicine," Ashot notes.

来源:https://phys.org/news/2019-01-silicones-temperatures-air.html

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899