联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
学术活动
上海硅酸盐所-大连化物所...
First-principles study o...
高级建筑门窗研究的最新进展
人工晶体中心学术讲坛(第...
Near-Field Thermal Radia...
荧光粉红色发光性能调控和...
面向半导体照明与生物成像...
Ultrafast laser plasma d...
Computational Catalysis ...
Electron work function ...
Wearable Thermoelectric ...
New Trends for Optical C...
铋离子激活新型发光材料的...
Building the Next Genera...
上海MGI研究院“材料信息...
现在位置:首页>新闻动态>学术活动
Rare-earth incorporation in oxide scintillator crystals, glasses, and nanostructures – Optical emission and beyond
2015-11-05 19:48:59 | 编辑: | 【 【打印】【关闭】

SEMINAR 

Key Laboratory of Transparent Opto-fuctional Inorganic Materials,
Shanghai Institute of Ceramics, Chinese Academy of Sciences
 

中国科学院上海硅酸盐研究所透明光功能无机材料重点实验室     

Rare-earth incorporation in oxide scintillator crystals, glasses,
and nanostructures–Optical emission and beyond
 

  Speaker :Prof. Anna Vedda (中国科学院国际访问学者) 

             Department of Materials Science, University of Milano-Bicocca, Milano (Italy) 

  时间:116 (周五)9:00 AM 

  地点:4号楼8楼会议室 

  联系人:潘裕柏 研究员(2820 

              研究员(2816     

  Brief introduction: Anna Vedda is Professor of General Physics at the Department of Materials Science of the University of Milano-Bicocca. Her principal fields of interest are the functional properties of luminescent materials also at the nanoscale, with special emphasis on structure-property correlations. Her research is partly devoted to application-oriented topics. Significant results were obtained concerning scintillating fibers for medicine and high energy physics, fluoride and oxide nano-crystals for medical imaging, as well as silicon dioxide-based materials for micro- and opto-electronics. Her experimental activity includes radio- and photo-luminescence, wavelength resolved thermo-luminescence, optical absorption, impedance spectroscopy studies, micro-Raman scattering and infrared spectroscopy. She has presently useful international collaborations, namely with ETH Zurich, the Université Claude Bernard in Lyon, CERN, Czech Academy of Sciences, Universidad Autonoma in Madrid, and with Chinese Academy of Sciences. She is author of more than 200 papers in refereed journals and she is responsible of several domestic and European research projects. She is member of the scientific board of the Doctorate School in Materials Science and Nanotechnology of the University of Milano-Bicocca and of the European Physics and Chemistry of Advanced Materials European Doctorate (PCAM).     

  Abstract: Rare earth ions (RE) are characterized by a great variety of optical transitions that make them very attractive as luminescent activators in many optical applications including lighting devices, lasers, solar energy materials, and ionizing radiation sensors. Moreover, several insulating oxide materials are considered good hosts for RE ions. After doping, the RE energy levels can lie within the host band-gap and confer an optical activity to otherwise transparent systems.  

  In this seminar it will be shown that, besides optical functionalization, RE incorporation in a host can simultaneously give rise to other modifications (thermodynamic, morphological, and structural) that can be controlled in order to engineer a material for a specific application. This is for example the case of mixed Lu2xGd2−2xSiO5 scintillator crystals doped with Ce, in which the introduction of Gd causes a lowering of the melting temperature, a subsequent reduction of anion defects and a clear improvement of scintillator performances. In silica-based sol-gel glasses, RE incorporation allows to realize scintillating optical fibers. However at concentrations above 1 mol%, RE ions tend to aggregate in the form of crystalline or amorphous clusters. These nano-structures are mostly non luminescent. An exception is the case of Eu doped SiO2 in which crystalline Eu2Si2O7 pyrosilicate nanocrystals are formed and display a very high luminescence efficiency. Finally, incorporation of optically active RE (like Eu and Tb) above 5 mol%  in nano-crystalline Hafnia gives rise to intense luminescence emission together with the lattice simmetry modification from monoclinic to cubic, opening application perspectives to the material for the realization of nano-composites and ceramics. 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899