联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
学术活动
Electrical and technical...
A hierarchical approach ...
第300期东方科技论坛-纳米...
二维黑磷的制备与应用探索
电热输运微观理解与热电材...
Elsevier Energy Connect-...
2017重点实验室青年学术交...
Design of LTCC Devices f...
人工晶体中心学术讲坛(第...
青年学术交流会I
SrTiO3衬底上生长SrRuO3薄...
Clinically relevant bone...
人工晶体中心学术讲坛(第...
陶瓷粉体制备和表征
无机功能材料与器件学术交...
现在位置:首页>新闻动态>学术活动
Organically-Capped Metal Nanoparticles for Soft Plasmonics, Soft Electronics and Targeted Theranostics
2017-10-19 13:45:58 | 编辑: | 【 【打印】【关闭】

SEMINAR

  The State Key Lab of High Performance Ceramics and Superfine Microstructure

  Shanghai Institute of Ceramics, Chinese Academy of Sciences

中国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和超 微 结 构 国 家 重 点 实 验 室

 

Organically-Capped Metal Nanoparticles for Soft Plasmonics, Soft Electronics and Targeted Theranostics

 

Wenlong Cheng

 1Department of Chemical Engineering, Monash University, Melbourne VIC 3800, Australia

2Melbourne Centre for Nanofabrication, Melbourne VIC 3168, Australia

   

报告时间:20171023日(星期一)9:00

报告地点:2号楼607会议室

 

联系人:王冉冉副研究员(2722)、孙静研究员(2717  

欢迎广大科研人员和研究生参与讨论!

 

报告摘要:

In this talk, I will briefly discuss our recent research activities in rational design and applications of organically-capped metal nanoparticles. Monodispersed metal nanoparticles are synthesized with controlled sizes and shapes, which are then modified by soft ligands including DNA, polymer and alkyl molecules. We have successfully applied such soft ‘meta-atoms’ to three major directions: (1) assembling soft plasmonic nanoparticle superlattice sheets (soft plasmene sheets); (2) fabricating soft elastic conductors (electronic skins) for wearable sensors; (3) DNA aptamer-targeted and light-controlled drug delivery.

Firstly, I will describe synthesis of soft ‘meta-atoms’ using nanospheres, nanorods, nanocages, nanocubes, and nanowires). Secondly, I will discuss how we manipulate the notoriously-difficult-to-manipulate ‘meta-atoms’ to form free-standing thinnest possible superlattice nanosheets, which could be used as a new-class SERS substrate which is soft, elastic and surface-attachable. This enabled the direct chemical identification on topologically complex surfaces such as banknotes and coins, and application as new-generation of anti-counterfeit security labels. Then I will discuss how we apply ultrathin gold nanowires to the design of electronic skin materials for wearable sensors enabling the monitoring of biological signals in real-time in-situ in a wireless fashion. Time permitting, I will also briefly mention our recent research on DNA aptamer-targetted plasmonic imaging and therapy.

  

报告人简介:

Wenlong Cheng is a professor and director of research in the Department of Chemical Engineering at Monash University, Australia. He is also an Ambassador Tech Fellow in Melbourne Centre for Nanofabrication. He earned his PhD from Chinese Academy of Sciences in 2005 and his BS from Jilin University, China in 1999. He held positions in the Max Planck Institute of Microstructure Physics and the Department of Biological and Environmental Engineering of Cornell University before joining the Monash University in 2010. His research interest lies at the Nano-Bio Interface, particularly plasmonic nanomaterials, DNA nanotechnology, nanoparticle anticancer theranostics and electronic skins. He has published >90 papers including 3 in Nature Nanotech, 1 in Nature Mater and 1 in Nature Comm.

 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899