联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网
学术活动
交流电压极化铁电单晶的压...
生物材料与组织工程研究中...
Experimental methods for...
超短超强激光的创新发展—...
日本大阪大学激光工程研究...
Laser-Induced Pressure-W...
Scintillators, scintilla...
肿瘤酸度活化的纳米药物载体
SEMINAR
Scintillator materials a...
Selected insights on Sem...
Processing of the ZnO-In...
人工晶体中心青年学术交流...
无机功能材料与器件青年学...
Organically-Capped Metal...
现在位置:首页>新闻动态>学术活动
Electronic Excitations in Materials: From Photovoltaics to Plasmonics
2017-11-09 11:41:39 | 编辑: | 【 【打印】【关闭】

SEMINAR

 

The State Key Lab of

High Performance Ceramics and Superfine Microstructure

Shanghai Institute of Ceramics, Chinese Academy of Sciences

中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷和 超 微 结 构 国 家 重 点 实 验 室

 

Electronic Excitations in Materials: From Photovoltaics to Plasmonics

 

Gang Lu

California State University Northridge

 

时间:20171114日(星期二)13:30

地点:嘉定园区F51)会议室

 

欢迎广大科研人员和研究生参与讨论!

联系人:陈立东4804

 

报告摘要:

Understanding excited state phenomena is at the heart of many important materials problems, such as photovoltaics, photocatalysis, plasmonics and solid-state lighting, to name but a few. In the realm of modeling and simulations, time-dependent density functional theory (TDDFT) has become one of the most powerful, versatile and popular tools for probing electronic structure and excitations in molecular and solid state materials. Unfortunately, TDDFT is computationally demanding and as a result, its application to realistic materials remains exceedingly difficult. In this talk, I will outline our recent progress in developing accurate and efficient TDDFT methods that would allow us to start addressing these challenges. Among them, a subspace TDDFT method is developed which can calculate both excitation energy and excited state forces accurately for systems containing up to a few thousand electrons. We have also proposed a time-dependent orbital-free DFT (TD-OFDFT) method with which tens of thousands of electrons can be treated accurately in metals. Combining these TDDFT methods with non-adiabatic molecular dynamics, one can perform coupled electron-ion and exciton-ion dynamics where phonons are important in electron transitions and excitations. I’ll show how these first-principles methods can be brought to bear on critical scientific problems that are of broad practical interests, including spontaneous electron-hole separation in perovskite solar cells upon photon adsorption, exciton diffusion and dynamics in disordered semiconductors for organic photovoltaics and plasmonic responses of metallic nanostructures.

报告人简介:

Prof. Lu received his Ph. D from Chinese Academy of Sciences while most of his Ph. D work was carried out in his current institution - California State University Northridge (CSUN). After a postdoc appointment at Harvard, Prof. Lu returned to CSUN as a faculty member in 2004 and was promoted to a full professor in 2009. He is the director of NSF-funded PREM center and the founding director of the Center of Excellence in Materials Innovation, both at CSUN. Prof. Lu spends significant research effort in developing first-principles based multiscale computational methods and has applied these methods to various important materials problems. Some of the problems relevant to energy applications will be highlighted in the talk. His recent publications can be found at http://www.csun.edu/nsfprem/recent-publications-dr-lu.

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899