联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
学术活动
Development of Light Ene...
First-principles Study o...
无损检测技术在陶瓷制造与...
FeSi2基热电材料的相变、...
中国散裂中子源及探测器研制
Electric Field Control o...
弛豫压电单晶及其应用
Some inorganic functiona...
核安全用新型卤化物闪烁材...
2017青年学术交流报告会
超快光学—追寻最快激光脉...
Recent Developments on P...
从小型试验装置到大型试验...
ICPMS痕量放射性污染检测...
当前高能物理和稀有事件物...
现在位置:首页>新闻动态>学术活动
Recent Developments on Piezoelectric Materials
2017-12-20 13:59:22 | 【 【打印】【关闭】

SEMINAR 
Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences

题目Recent Developments on Piezoelectric Materials

报告人Prof. Shujun Zhang, 澳大利亚伍伦贡大学(University of Wollongong, Australia

时间:20171225日(周一) 下午14:30

地点:中科院上海硅酸盐研究所中试基地(嘉定) 10号楼(青年公寓)2楼会议室

联系人:罗豪甦(021-69987760

李国荣(021- 52412420) 

 

报告人简介:Prof. Shujun Zhang received Ph.D. from Shandong University, China, in 2000. He is Future Fellowship Professor at ISEM/AIIM of University of Wollongong, prior to which, he is senior Scientist at Materials Research Institute and Professor at Materials Science and Engineering Department of The Pennsylvania State University. He is associate editor for IEEE Transaction UFFC, Journal of the American Ceramic Society, Journal of Electronic Materials and Science Bulletin, he is the section Editor-in-Chief for “Crystal Engineering” section of the MDPI journal, Crystals. He was a recipient of the Ferroelectrics Young Investigator Award of IEEE UFFC Society in 2011. He is senior member of IEEE and elected AdCom member of the IEEE UFFC society during 2016-2018. He holds six US patents and has authored/coauthored more than 380 papers in refereed journals, with SCI citations of >10,000 and H index of 49. He is now focusing on the fabrication- microstructure- property- performance relationship of high performance piezoelectric crystals and ceramics, including lead free materials, for sensor, transducer and energy storage/harvesting applications

报告内容:Piezoelectric materials play an important role in electromechanical applications, such as medical imaging, structural health monitoring (SHM) and nondestructive evaluation. To improve the performance of electromechanical devices, the selection of piezoelectric material with optimized properties is a critical concern. In this presentation, the history and applications of piezoelectric materials have been reviewed, with emphasis on recent developments of piezoelectrics, where the discussion is divided into two parts, i.e., ferroelectric and nonferroelectric materials. Special attention is focused on the temperature dependence of electromechanical properties and related mechanisms of piezoelectric materials, the potential piezoelectric materials for cryogenic and ultra-high temperature applications are also discussed. The uniqueness of relaxor-PT crystals and nonferroelectric piezoelectric crystals are surveyed for possible electromechanical applications. Specifically, relaxor-PbTiO3 single crystals show superior piezoelectric properties, with piezoelectric coefficients of >2000pC/N and electromechanical coupling factors of >90%, far outperforming conventional ferroelectric PZTs, which greatly benefit medical ultrasound imaging. Furthermore, good piezoelectric properties are found down to cryogenic temperatures, being on the order of 200pC/N at 20K. In contrast, nonferroelectric single crystals, such as langasites, oxyborates, melilite and fresnoite crystals, possess ultrahigh electrical resistivity, being on the order of 108Ohm.cm at 500oC. Though their piezoelectric coefficients fall into single digits, they are promising for high temperature sensing applications, up to 1200 oC. In addition, new development on lead free single crystals is also reviewed.

 

欢迎广大科研人员和研究生参加!

 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899