首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A high-throughput framework for determining adsorption energies on solid surfaces(测定固体表面吸附能的高通量框架)
发布时间:2017-05-09

A high-throughput framework for determining adsorption energies on solid surfaces(测定固体表面吸附能的高通量框架)
Joseph H. Montoya & Kristin A. Persson
npj Computational Materials 3, Article number: 14 (2017)
doi:10.1038/s41524-017-0017-z
Published online:30 March 2017
Abstract| Full Text | PDF OPEN
摘要:本研究提出了使用密度泛函理论来计算固体表面吸附能的高通量工作流程。采用Materials Project基础设施提供的开放源代码作为计算工具,我们将任意表面-被吸附底物之间不同构型的对称构建程序做了自动化处理。然后用这些算法以标准化、自动化方式构建和运行工作流程,以便在计算模拟过程中尽量减少用户的人为干预。为了验证这个的方法,本研究将该流程的计算结果与之前的实验和理论基准(来自固体表面化学吸附能CE27数据库)作了比较。这些基准能说明执行和管理200个以上密度函数理论计算任务如何可以降低为单次提交和后续分析。由于实现了吸附能的高效、高通量计算,本研究所提出的计算工具将可加快由理论指导的先进材料发现,及其在催化和表面科学领域的应用。 

Abstract: In this work, we present a high-throughput workflow for calculation of adsorption energies on solid surfaces using density functional theory. Using open-source computational tools from the Materials Project infrastructure, we automate the procedure of constructing symmetrically distinct adsorbate configurations for arbitrary slabs. These algorithms are further used to construct and run workflows in a standard, automated way such that user intervention in the simulation procedure is minimal. To validate our approach, we compare results from our workflow to previous experimental and theoretical benchmarks from the CE27 database of chemisorption energies on solid surfaces. These benchmarks also illustrate how the task of performing and managing over 200 individual density functional theory calculations may be reduced to a single submission procedure and subsequent analysis.By enabling more efficient high-throughput computations of adsorption energies, these tools will accelerate theory-guided discovery of advanced materials for applications in catalysis and surface science. 

Editorial Summary

Surface chemistry: an automatic sense of attraction(表面化学:引力的自动识别)

美国研究人员开发了一种自动化程序,能用来确定分子粘附在固体表面所需的能量。来自加州大学伯克利分校的劳伦斯伯克利国家实验室的Joseph Montoya和该大学的Kristin Persson开发了一种在任意表面上寻找吸附位点的算法。了解分子吸附所需的能量,对于确定电子器件和催化剂最佳材料来说至关重要。密度泛函理论可以预测吸附能量,但通常需要人们凭直觉来调整计算。由于表面和被吸附物的组合众多,选定最佳材料组合因而需要自动化方法。 MontoyaPersson采用Materials Project的开放源代码作为计算工具,为此提供了对任意表面-吸附物种间能进行高通量密度泛函理论计算的工作流程。 

An automated procedure for determining the energy required for a molecule to adhere to a surface is developed by researchers in the United States. Joseph Montoya from the Lawrence Berkeley National Laboratory and Kristin Persson from the University of California, Berkeley, introduce an algorithm for finding the adsorption sites on an arbitrary surface.Knowing the amount of energy required for molecular adsorption is crucial for identifying the best materials for use in electronics and catalysis. Density functional theory can predict adsorption energies but usually requires human intuition to tune the calculations.With so many combinations of surface and adsorbate, an automated method is required. Montoya and Persson use open-source computational tools from the Materials Project to present a workflow for performing high-throughput density functional theory calculations for arbitrary slabs and adsorbed species.

  
 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050