首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials(综述:相场法在辐射核材料微观结构和性能演化预测中的应用)
发布时间:2017-05-09

A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials(综述:相场法在辐射核材料微观结构和性能演化预测中的应用)
Yulan Li, Shenyang Hu, Xin Sun & Marius Stan
npj Computational Materials
 3, Article number: 16 (2017)
doi:10.1038/s41524-017-0018-y
Published online:14 April 2017
Abstract| Full Text | PDF OPEN
摘要:核材料引起的强烈辐射和高温极端环境将使其自身和核燃料和结构材料发生复杂的微观结构变化。本文评价了相场法在预测辐射下核材料微结构演化方面的作用,以及在预测微结构演化对材料力学性能、热性能和磁性能影响方面的作用。首先概述了缺陷演化的重要物理机制,以及辐射下核材料微观结构演化模拟所存在的显着差距。然后介绍了有强大预测功能的相场法,并综述了该方法在放射核材料微结构和性能演变方面的应用。针对这些内容的回顾分析表明:(1)相场模型可以正确描述诸如与空间位置关联的生成、迁移、缺陷重组、辐射诱导的溶解、Soret效应、强界面能各向异性、弹性相互作用等重要现象;(2)相场法可以定性和定量地模拟2D3D微结构演化,包括辐射诱导的偏析、第二相成核、空隙迁移、空泡和气泡超晶格形成、间质环演化、水合物形成和晶粒生长;(3)相场法可正确预测微观结构与其性质之间的关系。本文最后专门讨论了相场法在应用于核材料辐射效应方面的优点和局限性。该文近期发表于npj Computational Materials 3, Article number: 16 (2017)doi:10.1038/s41524-017-0018-y  

Abstract: Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050