首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence
发布时间:2023-09-19

Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence

    Thomas A. R. Purcell, Matthias Scheffler, Luca M. Ghiringhelli and Christian Carbogno     
 

    npj Computational Materials 9: 112(2023)
   doi.org/10.1038/s41524-023-01063-y
    Published online: 24 June 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Reliable artificial-intelligence models have the potential to accelerate the discovery of materials with optimal properties for various applications, including superconductivity, catalysis, and thermoelectricity. Advancements in this field are often hindered by the scarcity and quality of available data and the significant effort required to acquire new data. For such applications, reliable surrogate models that help guide materials space exploration using easily accessible materials properties are urgently needed. Here, we present a general, data-driven framework that provides quantitative predictions as well as qualitative rules for steering data creation for all datasets via a combination of symbolic regression and sensitivity analysis. We demonstrate the power of the framework by generating an accurate analytic model for the lattice thermal conductivity using only 75 experimentally measured values. By extracting the most influential material properties from this model, we are then able to hierarchically screen 732 materials and find 80 ultra-insulating materials.
摘要:  可靠的人工智能模型有望加速最佳性能材料的发现过程,这些材料可应用于包括超导、催化和热电等方面。上述研究领域的进步往往因可用数据的稀缺性和品质以及获取新数据所需的大量努力而受到阻碍。对于此类应用,迫切需要可基于易于获取材料特性的、可靠的替代模型来指导材料空间探索。本工作,我们提出了一个通用的数据驱动框架,该框架通过符号回归和敏感度分析的组合,为指导所有数据集的数据创建提供了定量预测和定性规则。为证明该框架的能力,我们使用了仅仅75个实验测量值就成功生成了晶格热导率的解析模型。通过从该模型中提取最具影响的材料特性,我们能够分级筛选732种材料,并从中找到了80种超绝缘材料。
Editorial Summary

Search Engine for Thermal Insulators:Symbolic regression-Sensitivity analysis

Thermal conductivity is one of the fundamental properties of materials, which is closely related to a wide range of scientific and industrial applications, including thermoelectric energy conversion, thermal barrier coatings, chip and battery thermal management, etc. Finding material systems with extreme thermal conductivity (extremely high or low) is an important prerequisite for achieving the aforementioned applications, which poses the main challenge in this field. At present, a comprehensive theoretical calculation method for thermal conductivity has been established based on first-principles calculations, but the actual calculation cost is huge, making it difficult to carry out exploration based on high-throughput calculations. On the other hand, in recent years, artificial intelligence-based material performance prediction methods have been developing rapidly and have also made achievements in thermal conductivity prediction. However, the existing methods are mainly limited by the insufficient number of computational and experimental thermal conductivity datasets, and are also lack of interpretability. In response to the above issues, a research team from Germany has developed a machine learning framework for screening materials with extreme thermal conductivity based on a combination of symbolic regression and sensitivity analysis technique. Compared to other machine learning methods, symbolic regression can not only achieve black-box like performance prediction, but also yield the analytical expression of the target performance, making it interpretable. Specifically, researchers conducted symbolic regression studies on the experimental thermal conductivity of 75 materials at 300K, and then obtained the functional relationship between thermal conductivity and descriptors. Further sensitivity analysis was conducted to obtain several descriptors that are most relevant to thermal conductivity, such as average mass, Debye temperature, and anharmonic parameters. Finally, based on the difficulty of calculating the above descriptors, a hierarchical screening on thermal conductivity can be carried out based on the inorganic material database. Based on the above framework, the researchers screened 732 material systems and found 96 thermal insulation materials with thermal conductivity below 10 W/mK. The main framework proposed in this study can not only be used for predicting thermal conductivity, but also have the potential to be used for high-throughput prediction of material properties with features similar to thermal conductivity, i.e. with limited existing databases, difficult to measure and with complex mechanisms.

热绝缘材料的快速搜索引擎:基于符号回归和敏感度分析的机器学习框架

热导率是材料的基本属性之一,与广泛的科学与工业应用密切相关,包括热电能量转换、热障涂层、芯片及电池热管理等。寻找具有极端热导率(极高或极低)的材料体系是实现上述应用的重要前提,也是该领域的重要挑战。目前基于第一性原理计算等手段已经建立了完备的热导率理论计算方法,但实际计算工作量庞大,难以开展高通量计算搜索和预测。另一方面,近年来基于人工智能的材料性能预测方法发展迅速,在热导率预测方面也有所建树。但目前这些方法受限于计算和实验热导率数据集条数的不足,同时已有模型本身缺乏可解释性。针对上述问题,来自德国的研究团队基于符号回归和敏感度分析相结合的技术发展了极端热导率材料筛选的机器学习框架。相比其他机器学习方法,符号回归不仅可以实现黑匣子似的性能预测,同时可以拟合得到目标性能的解析表达式,因此具有可解释性。具体地,研究人员以材料300K热导率为研究对象,针对75种材料的实验热导率开展符号回归研究,最后得到了热导率与描述符间的函数关系。进一步通过敏感度分析,得到了与热导率最为相关的几个描述符,如平均质量、德拜温度和非谐参数等。最后基于上述描述符计算的难易程度,可以基于无机材料数据库针对热导率开展分级的计算筛选预测。基于上述框架,该研究分级筛选了732种材料体系,从中发现了96种热绝缘材料,即热导率低于10 W/mK。本研究提出的研究思路不仅可用于热导率的预测,而且有望用于与热导率类似的,具有已有数据库数目有限、性能测量困难和物理机制复杂等特征的材料性能的高通量预测。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050