首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design
发布时间:2023-09-19

End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design

    Han Liu, Yuhan Liu, Kevin Li, Zhangji Zhao, Samuel S. Schoenholz, Ekin D. Cubuk, Puneet Gupta & Mathieu Bauchy   
 

    npj Computational Materials 9: 121(2023)
   doi.org/10.1038/s41524-023-01080-x
    Published online: 13 July 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract:  Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design.
摘要:  计算模拟已然变革了材料设计范式,然而,材料模拟器虽能准确预测材料性质,但不具备反向设计能力,无法以材料性质预测其结构特征。本研究通过设计一类可微分模拟器,实现模拟器内部的微分梯度反向传播,可通过端对端连接直接训练一个深度学习生成器模型,以多孔材料吸附曲线为例,预测任意曲线所对应的多孔结构特征,并采用矩阵处理器实现计算加速。该深度计算框架将有力推动材料反向设计范式变革,实现高性能新材料的加速开发。
Editorial Summary

Accelerate materials’ inverse design: Eliminating the communication barrier 

Materials simulations are conventionally programmed in some old-fashioned programming languages, which is a reminiscence of computational science before machine learning become popular, rendering it challenging to communicate between simulation and machine learning (ML). This communication barrier prevents the efficient construction of an ML model from simulation data, and by construction, the ML model generally lacks extrapolability to predict the material structure with target properties unseen in the training set. A team led by Prof. Han Liu from SOlids inFormaTics AI-Laboratory (SOFT-AI-Lab)@Sichuan University (SCU, CHINA), together with collaborators at University of California Los Angeles (UCLA, USA) and Google Brain Team (Google LLC, USA), introduced a computational inverse design framework that addresses these challenges, by programming both simulation and machine learning in a differentiable programming language platform, allowing simulation to gain backward differentiability the same as machine learning. Their seamless integration enables ML model to be trained directly by the differentiable knowledge of simulator—rather than a predefined training set, which is key to enhance the ML model extrapolability. Taking the example of sorption simulation in porous matrices, it is interesting that a deep generative model is trained to enable accurate prediction of porous structures by inputting arbitrary sorption isotherm. Moreover, the computational inverse design pipeline is found to be accelerated by tensor processing unit (TPU) computing, demonstrating the TPU hardware accelerator specialized for machine learning is flexible enough for intensive scientific simulations. Overall, by fusing simulation and machine learning in differentiable programs and hardware accelerators, this approach holds promise to accelerate inverse materials design.  

材料反向设计新架构:计算模拟与深度学习成为手拉手的好朋友

计算模拟能快速预测材料性质,但反过来,不具备反向设计能力,无法以材料性质预测其结构特征。在这方面,深度学习常用于反向设计,但模型精度完全由预定义的训练数据决定,不具备外延推理能力。该研究提出了一种新颖的深度计算框架,让计算模拟与深度学习“手拉手”,摆脱了对预定义训练数据的依赖,并获得卓越的外延推理能力。来自四川大学高分子学院的固体信息学AI实验室(SOFT-AI-Lab)刘晗团队,联合美国加州大学洛杉矶分校与谷歌大脑团队合作者,设计一类可微分的材料模拟器,直接端对端接入深度学习生成器模型,通过模拟器的物理知识(而非预定义数据)直接训练生成器,突破了传统反向设计思路的外推精度局限,并采用矩阵处理器实现计算加速。该研究以多孔材料吸附曲线模拟为例,利用上述深度计算框架,实现了精准预测任意曲线所对应的多孔结构特征,证明以物理知识直接训练生成器将极大提升模型的外延推理能力,同时也突出了矩阵处理器在加速计算模拟应用上的潜力。该研究提出的“手拉手”反向设计新架构,将有望推动材料反向设计范式变革,实现高性能新材料的加速开发。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050