首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A structure translation model for crystal compounds
发布时间:2023-09-19

A structure translation model for crystal compounds 

    Sungwon Kim, Juhwan Noh, Taewon Jin, Jaewan Lee & Yousung Jung  
 

    npj Computational Materials 9: 142 (2023)
   doi.org/10.1038/s41524-023-01094-5
    Published online: 11 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: High-throughput virtual screening for crystals aims to discover new materials by evaluating the property of every virtual candidate in the database exhaustively. During this process, the major computational bottleneck is the costly structural relaxation of each hypothetical material on the large-scale dataset using density functional theory (DFT) calculations. Here, we present a generative domain translation framework that maps the unrelaxed structural domains to the relaxed domains, enabling data-driven structural translations. The model predicts the materials formation energy with a small mean absolute error without DFT relaxations, and furthermore can produce the atomic coordinates consistent with the DFT relaxed structures. The utility of the proposed concept is not restricted to the structural domains, and we expect that it can be extended to translate the domain of easy-to-compute properties into the domain of more difficult properties.
摘要:  高通量虚拟晶体筛选旨在通过对数据库中的每个虚拟候选材料的性能进行彻底评估,从而发现新材料。在这个过程中,主要的计算瓶颈是使用密度泛函理论(DFT)计算对大规模数据集上的每种假设材料进行昂贵的结构弛豫。在这里,我们提出了一个生成式域转换框架,将未弛豫的结构域映射到弛豫的结构域,实现数据驱动的结构转换。该模型在不进行DFT弛豫的情况下预测材料的形成能,并且可以生成与DFT弛豫结构一致的原子坐标。所提出的概念不仅仅适用于处理结构领域的情况,我们认为它还可以用来将容易计算的性质转换成更难计算的性质。
Editorial Summary

Cryslator: Crystal Structure Converter accelerates structural relaxation

High-throughput virtual screening (HTVS), which utilizes computational evaluation of the potential properties of materials, has led to the discovery of a large number of new compounds in the fields of electrocatalysis, battery cathode materials, and electrolytes. In order to reduce the cost of computational time required for structural relaxation in the HTVS process, researchers have developed models such as the "domain switching" model, which implements a "many-to-many" task for structural relaxation, however, this method is prone to overfitting in the case of multiple unrelaxed structures converging to the lowest energy structure. However, this approach is prone to overfitting in the case of multiple unrelaxed structures converging to the lowest energy structure. A team lead by Prof. Yousung Jung from Department of Chemical and Biomolecular Engineering, KAIST, South Korea, proposed a data-driven structural relaxation ML model, Cryslator (Crystal Structure Translator), based on the domain translation model. Unlike the conventional domain translation approach applied to the many-to-many problems as described above in chemistry, the approach mainly focuses on predicting the final relaxed structures from various unrelaxed structures (i.e., many-to-one problem). For this, the authors leverage the pix2pix domain translation model, which is widely used in the computer vision field, where the pair data (i.e., initial & final structure) are provided. More specifically, the pix2pix is adapted here to translate between the crystal hidden feature space of unrelaxed structures and that of relaxed structures, where both features are obtained from pre-trained crystal graph convolutional neural networks. To demonstrate the performance, the proposed model is applied to the X-Mn-O dataset (X=Mg, Ca, Sr and Ba) enumerated by the element substitutions. The Cryslator shows robust performance in predicting the crystal formation energies regardless of the relaxation type of input structures (i.e., unrelaxed, partially relaxed, or fully relaxed crystal structures) demonstrating a many-to-one mapping capability. Additional experiments show the reasonable performance on predicting the relaxed atomic structures as well as the considerable reduction of errors in several structural and electronic properties through translation. Finally, the authors discuss generalizability of the model with chemical space consisting of more diverse combinations of elements in periodic table by conducting additional experiments with Materials Project database. 
Cryslator:晶体结构转换器加速结构弛豫

高通量虚拟筛选(HTVS)利用计算评估材料的潜在性能,已在电催化、电池正极材料、电解质等领域发现了大量新化合物。为了降低高通量虚拟筛选流程中结构弛豫所需的计算时间成本,科研人员已开发出如“领域转换”模型,实现结构弛豫时“多对多”任务,然而这种方法在多个未弛豫结构收敛到能量最低结构的情况下容易过拟合。韩国科学技术院化学与生物分子工程系的Yousung Jung教授领导的团队提出了一种基于领域转换模型的数据驱动结构弛豫机器学习模型,名为Cryslator(晶体结构转换器)。与传统的领域转换方法不同,该方法主要专注于从各种未弛豫的结构中预测最终弛豫的结构(即多对一问题),而不是像上述化学中所描述的应用于多对多问题的领域转换方法。为此,作者们利用了在计算机视觉领域广泛使用的pix2pix领域转换模型,其中提供了配对数据(即初始结构和最终结构)。具体来说,在这里将pix2pix调整为在未弛豫结构和弛豫结构的晶体隐藏特征空间之间进行转换,这两种特征都来自预训练的晶体图卷积神经网络。为了证明性能,将所提出的模型应用于通过元素替代列举出的X-Mn-O数据集(其中X=Mg、Ca、Sr和Ba)。Cryslator在预测晶体形成能量方面表现出强大的性能,无论输入结构的弛豫类型如何(即未弛豫、部分弛豫或完全弛豫的晶体结构),都展示出了多对一的映射能力。额外的实验还显示出在预测弛豫的原子结构以及在几种结构和电子性质方面的误差显著减少。最后,作者们通过在Materials Project数据库上进行额外实验,讨论了模型在更多元素周期表组合构成的化学空间中的泛化能力。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050