首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Circumventing the phonon bottleneck by multiphonon-mediated hot exciton cooling at the nanoscale
发布时间:2023-09-19

Circumventing the phonon bottleneck by multiphonon-mediated hot exciton cooling at the nanoscale 

   Dipti Jasrasaria & Eran Rabani  
 

    npj Computational Materials 9: 145 (2023)
   doi.org/10.1038/s41524-023-01102-8
    Published online: 16 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Nonradiative processes govern efficiencies of semiconductor nanocrystal (NC)-based devices. A central process is hot exciton cooling, or the nonradiative relaxation of a highly excited electron/hole pair to form a band-edge exciton. Due to quantum confinement effects, the timescale and mechanism of cooling are not well understood. A mismatch between electronic energy gaps and phonon frequencies has led to the hypothesis of a phonon bottleneck and extremely slow cooling, while enhanced electron-hole interactions have suggested ultrafast cooling. Experimental measurements of the cooling timescale range six orders of magnitude. Here, we develop an atomistic approach to describe phonon-mediated exciton dynamics and simulate cooling in NCs of experimentally relevant sizes. We find that cooling occurs on ~30 fs timescales in CdSe NCs, in agreement with the most recent measurements, and that the phonon bottleneck is circumvented through a cascade of multiphonon-mediated relaxation events. Furthermore, we identify NC handles for tuning the cooling timescale.
摘要:  半导体纳米晶体(NC)基器件的效率受非辐射过程的影响。其中一个关键过程是热激子冷却,即高度激发的电子-空穴对的非辐射弛豫,以形成带边激子。由于量子限域效应,冷却的时间尺度和机制尚不完全清楚。电子能隙与声子频率之间的不匹配导致了声子瓶颈和极其缓慢冷却的假设,而增强的电子-空穴相互作用则暗示了超快冷却。对冷却时间尺度的实验测量范围涵盖了六个数量级。在这里,我们采用原子尺度的方法来描述声子介导的激子动力学,并模拟在实验相关尺寸的NC中的冷却过程。我们发现,在CdSe半导体纳米晶体中,冷却发生在约30飞秒的时间尺度上,与最近的测量结果一致,并且通过多声子介导的级联弛豫事件,规避了声子瓶颈。此外,我们还确定了调节冷却时间尺度的NC参数。
Editorial Summary

From phonon bottleneck to Auger mechanism:  Energy transfer in semiconductor nanocrystals

Understanding the non-radiative decay mechanism of electron excited states in semiconductor nanocrystals (NCs) is crucial for efficient NC technology. When photo-excitation generates energetic electron-hole pairs, it is necessary to investigate how carriers are converted to band-edge excitons by "thermal exciton cooling". Efficient cooling is achieved by phonon interactions in conventional semiconductor bulk, but the electron-phonon coupling in semiconductor nanocrystals is drastically altered under confinement, and thus the cooling timescales and mechanisms need to be revisited. A team lead by Dr. Dipti Jasrasaria and Prof. Eran Rabani from Department of Chemistry, University of California, USA, developed an atomistic theory to describe hot exciton cooling in II-VI NCs of experimentally relevant sizes. Their framework describes phonon-mediated transitions between excitonic states, which inherently include electron-hole correlations. Furthermore, the authors accurately describe the exciton-phonon couplings (EXPC) and include multiphonon-mediated excitonic transitions. The authors use a master equation approach, which assumes weak EXPC, to propagate exciton population dynamics. The timescales and exciton decay mechanism emerge naturally in the approach. The authors find that cooling occurs on timescales of tens of femtoseconds in wurtzite CdSe NCs, in agreement with measurements, and occurs an order of magnitude slower in wurtzite CdSe-CdS core-shell NCs due to the weaker EXPC in these systems. The authors show that this ultrafast timescale is governed by both electron-hole correlations and multiphonon emission processes, which are made efficient by the quasi-continuous manifold of phonon states in NCs. The results are consistent with the picture emerging from the Auger-assisted relaxation mechanism, but, in addition, the authors attribute the lack of a phonon bottleneck to the important role of multiphonon emission processes.
从声子瓶颈到Auger机制:半导体纳米晶体能量转移的动力学解析

理解半导体纳米晶体(NC)中电子激发态的非辐射衰变机制对高效NC技术至关重要。在光激发产生高能电子-空穴对时,需要探究载流子如何通过“热激子冷却”转化为带边激子。传统半导体体块中的声子相互作用实现高效冷却,但在约束下,半导体纳米晶体中的电子-声子耦合发生巨大改变,因此冷却时间尺度与机制需重新探讨。美国加利福尼亚大学化学系的Dipti Jasrasaria博士和Eran Rabani教授领导的团队,开发了一个原子级理论,用于描述与实验相关尺寸的II-VI纳米晶中的热激子冷却现象。他们的理论框架描述了激子态之间的声子介导跃迁,这些跃迁固有地包括电子-空穴相关性。此外,作者还准确地描述了激子-声子耦合(EXPC),并将多声子介导的激子跃迁包括在内。作者使用主方程方法(假定 EXPC 很弱)来传播激子群体动力学。在这一方法中,时间尺度和激子衰变机制自然地浮现出来。作者发现,在闪锌矿CdSe纳米晶中,冷却过程发生在数十飞秒的时间尺度上,与实验结果一致;而在闪锌矿CdSe-CdS核-壳结构的纳米晶中,由于这些系统中EXPC较弱,冷却速度慢了一个数量级。作者展示了这个超快时间尺度受到电子-空穴相关性和多声子发射过程的共同调控,这些过程在纳米晶中的准连续声子态中变得更加高效。这些结果与Auger辅助弛豫机制所描绘的情景一致,但此外,作者将声子瓶颈的缺乏归因于多声子发射过程的重要作用。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050