首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
High-throughput study of the anomalous Hall effect
发布时间:2023-09-19

High-throughput study of the anomalous Hall effect

   Jakub ?elezny, Yuta Yahagi, Carl s-Gomez Ollivella, Yang Zhang & Yan Sun  
 

    npj Computational Materials 9: 151 (2023)
   doi.org/10.1038/s41524-023-01113-5
    Published online: 22 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Despite its long history, the anomalous Hall continues to attract attention due to its complex origins, its connection to topology, and its use as a probe of magnetic order. In this work we investigate the anomalous Hall effect in 2871 ferromagnetic materials using an automatic high-throughput calculation scheme. We analyze general properties of the effect, such as its reliance on spin-orbit coupling strength and magnetization. In materials with the largest anomalous Hall effect, we find that symmetry-protected band degeneracies in the non-relativistic electronic structure, such as mirror symmetry-protected nodal lines, are typically responsible for the large effect. Furthermore, we examine the dependence of the anomalous Hall effect on magnetization direction and demonstrate deviations from the commonly assumed expression jAHE?~?M? ?E.
摘要:  尽管反常霍尔效应有着悠久的历史,但由于其复杂的起源、与拓扑学的联系以及作为探测磁序的工具的使用,它仍然吸引着人们的注意。在这项研究中,我们使用自动高通量计算方案,对2871种铁磁材料中的反常霍尔效应进行了调查。我们分析了效应的一般性质,例如它对自旋轨道耦合强度和磁化强度的依赖关系。在具有最大反常霍尔效应的材料中,我们发现非相对论电子结构中受对称性保护的能带简并,如镜面对称保护的节点线,通常是产生这种大效应的原因。此外,我们研究了反常霍尔效应对磁化方向的依赖性,并证明了与常见假设表达式 jAHE ~ M E 偏离的情况。
Editorial Summary

Unconventional effect of magnetization on the anomalous Hall effect

A magnetic field acting in a metal induces a transverse current, which is known as the classical Hall effect, while in some magnetic materials a transverse current exists even in the absence of an external magnetic field, known as the anomalous Hall effect. This effect originates from time-reversal symmetry breaking due to magnetic ordering and relativistic spin-orbit coupling, and recent studies have shown that it may exist in some antiferromagnetic materials. However, the origin of the anomalous Hall effect, and its connection to topology is complex and variable, and requires in-depth study of a wider range of systems. A team lead by Dr. Jakub ?elezny from Institute of Physics, Czech Academy of Sciences, Czech Republic, systematically investigated the anomalous Hall effect (AHE) in a large number of magnetic materials using automated DFT calculations. By building a large-scale database of reference intrinsic AHEs, the authors reveal the general properties of AHEs and provide insights into the relationship between AHE amplitude and spin-orbit coupling strengths, magnetization, and symmetry. The authors' study shows that the effect of symmetry in the AHE amplitude is more significant compared to the relationship between magnetization and spin-orbit coupling, especially in large AHE materials. In addition, the authors have investigated the dependence of AHE under magnetization rotation for some materials and found that the relationship between AHE and magnetization does not simply follow the common linear relationship, but is more influenced by the symmetry of the crystal structure. This finding reveals that the behavior of AHE may be more complex and cannot be simply described by a single formula. Although the authors' study focused on metallic materials, calculations were also performed on hundreds of insulators. The results show that these insulator materials do not exhibit the quantum anomalous Hall effect, and that large AHE amplitudes are very rare in the materials calculated, suggesting that there is some sort of practical limit to the AHE amplitude. Overall, this study provides insight into the understanding of the anomalous Hall effect, while also emphasizing the need for more experimental validation and further research to explain the complex AHE phenomenon. In addition, the authors have calculated the ordinary conductivity, which provides important information about the conductivity properties of the material, although in some ways slightly more limited than the results of the AHE calculations.
超越线性关系:高通量计算研究磁化对反常霍尔效应的非常规影响

磁场作用于金属中的电流会引发横向电流,这即为经典霍尔效应;而在某些磁性材料中,甚至在无外部磁场的情况下也会存在横向电流,即反常霍尔效应。这种效应起源于磁性有序和相对论自旋轨道耦合导致的时间反演对称性破缺,近期研究表明它可能存在于某些反铁磁材料中。然而反常霍尔效应的起源、与拓扑学的联系复杂多变,需要深入研究更广泛的体系。由捷克科学院物理研究所的Jakub ?elezny博士领导的团队,利用自动DFT计算方法,系统地研究了大量磁性材料中的反常霍尔效应(AHE)。通过建立大规模的参考本征AHE数据库,作者揭示了AHE的一般性质,并深入探讨了AHE幅度与自旋轨道耦合强度、磁化以及对称性之间的关系。作者的研究表明,与磁化和自旋轨道耦合之间的关系相比,对称性在AHE幅度的影响更为显著,尤其在大AHE材料中。此外,作者还对部分材料进行了磁化旋转下AHE的依赖性研究,发现AHE与磁化的关系并不简单遵循常见的线性关系,而是受晶体结构对称性的影响较大。这种发现揭示了AHE的行为可能更为复杂,而不能简单地用一个公式来描述。虽然作者的研究主要针对金属材料,但也对数百种绝缘体进行了计算。结果表明,这些绝缘体材料并不表现出量子反常霍尔效应,而大AHE幅度在计算的材料中非常罕见,这暗示了AHE幅度存在某种实际上限。总的来说,这项研究为理解反常霍尔效应提供了深入的洞察,同时也强调了需要更多实验验证和进一步研究来解释复杂的AHE现象。此外,作者还计算了普通电导率,为材料的电导特性提供了重要信息,虽然在某些方面比AHE计算的结果略为有限。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050