首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Thermodynamics of multi-sublattice battery active materials: from an extended regular solution theory to a phase-field model of LiMnyFe1-yPO4
发布时间:2023-09-19

Thermodynamics of multi-sublattice battery active materials: from an extended regular solution theory to a phase-field model of LiMnyFe1-yPO4

   Jakub ?elezny, Yuta Yahagi, Carl s-Gomez Ollivella, Yang Zhang & Yan Sun  
 

    npj Computational Materials 9: 151 (2023)
   doi.org/10.1038/s41524-023-01109-1
    Published online: 21 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Phase separation during the lithiation of redox-active materials is a critical factor affecting battery performance, including energy density, charging rates, and cycle life. Accurate physical descriptions of these materials are necessary for understanding underlying lithiation mechanisms, performance limitations, and optimizing energy storage devices. This work presents an extended regular solution model that captures mutual interactions between sublattices of multi-sublattice battery materials, typically synthesized by metal substitution. We apply the model to phospho-olivine materials and demonstrate its quantitative accuracy in predicting the composition-dependent redox shift of the plateaus of LiMnyFe1-yPO4 (LFMP), LiCoyFe1-yPO4 (LFCP), LiCoxMnyFe1-x-yPO4 (LFMCP), as well as their phase separation behavior. Furthermore, we develop a phase-field model of LFMP that consistently matches experimental data and identifies LiMn0.4Fe0.6PO4 as a superior composition that favors a solid solution phase transition, making it ideal for high-power applications.
摘要:  在氧化还原活性材料的锂化过程中,相分离是影响电池性能(能量密度、充电速率和循环寿命)的关键因素。准确的物理描述这些材料对于理解其锂化机制、性能限制以及优化能量存储装置至关重要。本研究提出了一个扩展的正则溶液模型,用于捕捉多亚晶电池材料子晶格之间的相互作用,这些材料通常是通过金属替代合成的。我们将该模型应用于磷酸橄榄石材料,并展示了其在预测LiMnyFe1-yPO4 (LFMP)、LiCoyFe1-yPO4 (LFCP)、LiCoxMnyFe1-x-yPO4 (LFMCP)的平台氧化还原电位与组成之间关系方面的定量准确性,以及它们的相分离行为方面的准确性。此外,我们开发了一个LFMP的相场模型,与实验数据一致,并确定LiMn0.4Fe0.6PO4是一种优越的组成,有利于固溶相转变,使其成为高功率电池应用的理想选择。
Editorial Summary

Designing LiMnyFe1-yPO4 cathodes

Lithium-ion batteries are an important foundation for moving towards sustainable energy production, electric mobility and energy storage, and they have a key role to play in the future energy transition. Phase separation during the lithiation of redox-active materials is a critical factor affecting battery performance, including energy density, charging rates, and cycle life. Accurate physical descriptions of these materials are necessary for understanding underlying lithiation mechanisms, performance limitations, and optimizing energy storage devices. A team led by Prof. Alexandros Vasileiadis from the Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, The Netherlands, has extended the theory of canonical solutions to explain and predict the behavior of olivine phosphate cathodes. The introduction of multiple sublattices and their interactions provides an elegant explanation for the variation of the redox potential and the phase separation behavior. The formalization of mean-field theory provides an intuitive understanding of these phenomena, which can facilitate the study of novel active materials. This approach can serve as a valuable alternative to computationally intensive ab initio calculations, providing clear insights starting from simple concepts. Mathematically derived phenomenological descriptions suggest that changes in redox potentials are caused by interactions of non-reactive sublattices. In addition, the authors found that redox platforms previously shown to be phase-separated can be transformed into solid solution phases. This transformation is due to a reduction in the number of nearest neighbors within the same sublattice, which reduces the effective interaction of the intercalated species. Application of the model to materials that have been extensively studied, such as LFMP, LFCP, and LFMCP and their possible compositions, demonstrates how quantitative and accurate this theory can be even when considering complex systems. Subsequent applications in the phase-field framework are able to reproduce and explain a variety of experimental results, the interpretation of which was previously incomplete and lacked mathematical support. Firm conclusions about the absence of phase separation in LFMP with low manganese content still need to be confirmed experimentally. However, the proposed mechanism used to explain the operational XRD peak shifts reveals the importance of considering multiparticle behavior when experimenting with a collective system such as a half-cell. Finally, the model strongly points to an optimal composition for high power cathodes, demonstrating that LiMn0.4Fe0.6PO4 may be an excellent candidate due to its solid solution behavior and low transport-induced inhomogeneities. Further experiments are needed to validate this argument and the use of a two-dimensional model to capture the known transport limitations in the particles is suggested. The interaction between the two sublattice concentrations may play an important role in explaining the nonequilibrium behavior, opening the way to optimize the (discharge) process to take advantage of these effects. The authors anticipate that the proposed theory may be applicable to other popular active materials such as LiMn1.5Ni0.5O4 (LMNO) or NMC with different compositions, explaining the effect of metal ratio on the performance. To do so would require consideration of structural modifications occurring in spinel or lamellar structures that have not been considered in current theories. Ultimately it is hoped that overcoming these limitations may extend the field of the theory so that particle size, porosity and thickness as well as the composition of the material can all be used as part of optimizing cell design parameters to improve cycle life and energy efficiency.
从正则溶液到相场模型:设计磷酸铁锰锂正极的新方法

锂离子电池是迈向可持续能源生产、电动出行和能源储存的重要基础,其在未来的能源转型中具有关键作用。在氧化还原活性材料的锂化过程中,相分离是影响电池性能(能量密度、充电速率和循环寿命)的关键因素。准确的物理描述这些材料对于理解其锂化机制、性能限制以及优化能量存储装置至关重要。由荷兰代尔夫特理工大学应用科学学院辐射科学与技术系的Alexandros Vasileiadis教授领导的团队,通过对磷酸橄榄石阴极的研究,扩展了正则溶液理论,以解释和预测其行为。他们引入了多个子晶格及其相互作用,为氧化还原电位的变化和相分离行为提供了一个清晰而优雅的解释。均场理论的形式化使这些现象易于理解,从而有望促进新型活性材料的研究。这种方法不仅可以替代计算复杂的从头计算,还能从简单的概念出发,为我们提供清晰的洞见。该研究通过数学推导对现象进行了系统描述,表明氧化还原电位的变化是由非反应子晶格之间的相互作用引起的。此外,研究人员发现之前表现出相分离的氧化还原平台实际上可以转变为固溶相。这种转变是由于同一子晶格中最近邻数目的减少,从而降低了插层物种的相互作用强度。将该模型应用于已广泛研究的材料,如LFMP、LFCP和LFMCP,以及它们可能的组成,展示了即使在考虑复杂系统时,该理论的定量和准确性。进一步将这一模型应用于相场框架,成功地复现并解释了一些实验结果,这些结果以前解释不完全,缺乏数学支持。尽管关于低锰含量LFMP中是否存在相分离的结论尚需通过实验证实,但提出的机制已经为解释操作中XRD峰值移动的现象提供了新的视角,凸显了在实验集体系统(如半电池)中考虑多粒子行为的重要性。最后,该模型还明确指出了实现高功率正极的最佳组成,LiMn0.4Fe0.6PO4可能因其固溶行为和较低的输运引起的非均匀性而成为优选。然而,为了验证这一观点,还需要进行进一步的实验,并建议采用二维模型来捕捉颗粒中已知的输运限制。两个子晶格浓度之间的相互作用可能在解释非平衡行为方面发挥关键作用,为优化(放电)过程开辟了新途径。作者预计,所提出的理论可以应用于其他常见的活性材料,如LiMn1.5Ni0.5O4(LMNO)或不同组成的NMC,从而解释金属比对性能的影响。但要实现这一目标,需要考虑尖晶石或层状结构中发生的结构变化,这些变化目前尚未在理论中得到考虑。最终,作者希望扩展这一理论的应用领域,甚至可以将粒子尺寸、孔隙率、厚度以及材料的组成都能够成为优化电池设计参数的一部分,从而提高电池的循环寿命和能量效率。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050