首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials
发布时间:2023-09-19

Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials

   Junlei Zhao, Jesper Byggm?star, Huan He, Kai Nordlund, Flyura Djurabekova & Mengyuan Hua  
 

    npj Computational Materials 9: 159 (2023)
   doi.org/10.1038/s41524-023-01117-1
    Published online: 01 September 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Ga2O3 is a wide-band gap semiconductor of emergent importance for applications in electronics and optoelectronics. However, vital information of the properties of complex coexisting Ga2O3 polymorphs and low-symmetry disordered structures is missing. We develop two types of machine-learning Gaussian approximation potentials (ML-GAPs) for Ga2O3 with high accuracy for / / / / polymorphs and generality for disordered stoichiometric structures. We release two versions of interatomic potentials in parallel, namely soapGAP and tabGAP, for high accuracy and exceeding speedup, respectively. Both potentials can reproduce the structural properties of all the five polymorphs in an exceptional agreement with ab initio results, meanwhile boost the computational efficiency with 5? ?102 and 2? ?105 computing speed increases compared to density functional theory, respectively. Moreover, the Ga2O3 liquid-solid phase transition proceeds in three different stages. This experimentally unrevealed complex dynamics can be understood in terms of distinctly different mobilities of O and Ga sublattices in the interfacial layer. 
摘要:  氧化镓 (Ga2O3) 是一种新兴超宽禁带半导体,在电子学和光电子学中具有重要应用前景。然而,有关复杂的氧化镓多晶体系和低对称度非晶结构的重要结构性质尚不明确。我们开发了两种类型的机器学习高斯回归势函数 (Gaussian Approximation Potentials,ML-GAPs),其对于 / / / / 相氧化镓多晶体具有高精度,同时对于无序化的非晶结构具有广泛普适性。我们同时发布了两个版本的势函数模型,分别为soapGAP和tabGAP,分别可用于高精度模拟和高计算能效模拟。这两种势函数均能以与第一性原理计算结果高度一致的精度预测所有五种多晶体的结构性质,同时相对于第一性原理计算,计算速度分别提高了5? ?102和2? ?105倍。此外在模拟中,我们揭示了Ga2O3的液-固相变过程中经历的三个不同重结晶阶段。这一实验上尚未有效观测的复杂动力学过程可以通过界面层中氧和镓亚格子的明显不同的迁移率来诠释。
Editorial Summary

Polymorphic Ga2O3: A new playground for machine-learning interatomic potential?

Gallium oxide (Ga2O3) emerges as a vital fourth-generation ultrawide bandgap semiconductor materials, and exhibits outstanding physical properties that hold the promise of surpassing the theoretical limitations of current semiconductor materials. It holds significant potential for applications in electronic power devices, solar-blind detection, high-temperature gas sensing. However, due to the high complexity of the Ga2O3 system, existing computational studies have been confined to first-principles calculations at the scale of a hundred atoms. Research addressing crucial scientific and technological inquiries related to Ga2O3 necessitates large-scale computational frameworks involving tens of thousands of atoms or more. The computational demands associated with such systems are prohibitively vast, rendering it impractical to solely rely on first-principles calculations for comprehensive investigations. In recent developments, researchers from the Department of Electronic and Electrical Engineering at South University of Science and Technology have achieved a breakthrough. The team has combined advancements in Ga2O3 semiconductor technology with cutting-edge machine-learning techniques to successfully devise an interatomic potential capable of simulating multiphase coexistence within Ga2O3 on a large scale. This innovative approach delves deep into the mechanisms governing growth and investigates critical structural properties. The research holds paramount significance in accelerating the maturation of Ga2O3 semiconductor technology and resolving pivotal technological challenges pertaining to engineering of multiphase coexistence Ga2O3 system. In a significant research endeavor, a comprehensive first-principles database for the diverse multiphase configurations of Ga?2O3 has been successfully constructed as illustrated in Figure 1. Employing Gaussian process regression, a machine learning algorithm, the database has been meticulously trained and fitted to generate multiple versions of potentials from the same generation. These potentials are then subjected to rigorous testing using a proprietary automated testing software package, which systematically evaluates the accuracy, generality, and computational efficiency of each parameter version of the potential. The outcome of this iterative process is an optimized version of the potential. This research effort has resulted in the public release of the interatomic potentials that combine remarkable accuracy, versatility, and computational efficiency. The potentials are capable of effectively simulating the structural evolution processes of Ga2O3 systems at the scale of tens of thousands to millions of atoms. The application of these potentials in molecular dynamics simulations has led to the unveiling of complex dynamic processes involving the independent behavior of Ga and O sub-lattices during the solid-liquid interface recrystallization of -phase Ga2O3 (Figure 2). The success of this study opens avenues for further investigations in critical areas of Ga2O3 material research. The subsequent application of the developed potentials holds immense promise in elucidating phenomena such as phase transitions induced by high-energy ion irradiation, lattice thermal transport mechanisms, and gas-phase epitaxial growth. The potentials’ capabilities offer a profound impact on advancing our understanding of Ga2O3 materials and hold substantial implications for the development of groundbreaking technologies in various domains.
多相态氧化镓:机器学习势函数的新乐园?

以氧化镓 (Ga2O3) 为代表的第四代超宽禁带半导体材料具有优异的物理特性,有望进一步突破现有半导体材料的理论极限,在电子功率器件、日盲探测、高温气体传感领域 有重要应用前景。然而由于氧化镓体系的高度复杂性,现有计算仿真研究均局限于针对百原子级的第一性原理计算,一些氧化镓相关的重要科学技术问题的研究必须建立在万原子级以上的大尺度计算体系之上,因其所需计算量过于庞大,无法仅依靠第一性原理计算开展系统研究。来自南方科技大学电子与电气工程系的化梦媛助理教授与赵骏磊研究助理教授结合氧化镓半导体技术尖端发展趋势与机器学习最前沿研究,成功开发出能够大尺度模拟氧化镓多相态共生体系的分子动力学势函数,深入研究其生长调控机制与重要结构特性,对加速氧化镓半导体技术成熟和解决多相态共生体系制备关键技术问题具有非常重要的研究意义。此项研究通过大规模第一性原理计算建立了高精度氧化镓多相态体系第一性原理数据库(图1)。采用高斯过程回归机器学习算法对数据库进行训练拟合、产生同一代多个势函数版本并输出势函数测试结果。通过自主开发的自动测试 软件包对每一参数版本设置下势函数的精确性、普适性和计算效能进行系统测试,从而得出多次迭代后的优化势函数版本。最终公开发布的势函数兼具高精度,泛用性以及高计算效能等优势,可以有效模拟十万至百万原子级体系的氧化镓材料结构演化过程。相应的分子动力学模拟成功揭示了 相氧化镓固液界面重结晶时镓与氧亚晶格相对独立的复杂动态过程(图2)。后续势函数将可被应用于研究高能离子束辐照相变、晶格热输运、表面气态外延生长等氧化镓材料相关重要技术领域。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050