首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Generalization of the mixed-space cluster expansion method for arbitrary lattices
发布时间:2023-09-25

Generalization of the mixed-space cluster expansion method for arbitrary lattices

   Junlei Zhao, Jesper Byggm?star, Huan He, Kai Nordlund, Flyura Djurabekova & Mengyuan Hua  
 

    npj Computational Materials 9: 75 (2023)
   doi.org/10.1038/s41524-023-01029-0
    Published online: 19 May 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Mixed-space cluster expansion (MSCE), a first-principles method to simultaneously model the configuration-dependent short-ranged chemical and long-ranged strain interactions in alloy thermodynamics, has been successfully applied to binary FCC and BCC alloys. However, the previously reported MSCE method is limited to binary alloys with cubic crystal symmetry on a single sublattice. In the current work, MSCE is generalized to systems with multiple sublattices by formulating compatible reciprocal space interactions and combined with a crystal-symmetry-agnostic algorithm for the calculation of constituent strain energy. This generalized approach is then demonstrated in a hypothetical HCP system and Mg-Zn alloys. The current MSCE can significantly improve the accuracy of the energy parameterization and account for all the fully relaxed structures regardless of lattice distortion. The generalized MSCE method makes it possible to simultaneously analyze the short- and long-ranged configuration-dependent interactions in crystalline materials with arbitrary lattices with the accuracy of typical first-principles methods.
摘要:  混合空间团簇膨胀(MSCE)是一种同时模拟合金热力学中依赖于构型的短程化学和长程应变相互作用的基本方法,已成功应用于二元面心立方和体心立方合金。然而,先前报道的MSCE方法仅限于在单个亚晶格上具有立方晶体对称的二元合金。在本工作中,我们通过建立相容的互易空间相互作用,结合晶体对称无关的算法,将MSCE推广到具有多个子晶格的系统。这种广义方法随后在一个假设的六方最密堆积体系和镁锌合金中得到了验证。目前的MSCE可以显著提高能量参数化的精度,并考虑到所有完全弛豫的结构,而不考虑晶格失真。广义MSCE方法使同时分析任意晶格晶体材料中短程和长程结构依赖的相互作用成为可能,具有典型第一性原理方法的准确性。
Editorial Summary

Mixed Space Cluster Expansion Methods for Arbitrary Lattices

In materials, long-ranged interactions and short-ranged chemical interactions play important roles in phase stability and morphology. The total energies of a few coherent structures can be obtained by cluster expansion (CE) method. However, CE method such based on DFT is proven to be challenging for long-ranged strain interaction. By modeling the short- and long-ranged interactions in r- and k-space respectively, long-ranged strain interactions are incorporated in CE, which is called mixed-space cluster expansion (MSCE). The MSCE method owes the high accuracy, compared with r-space CE, to three aspects: (1) The long-ranged limit of the constituent strain energy due to size-mismatch are explicitly incorporated using the k-space formalism. (2) The attenuation of the long-ranged interactions accommodates for medium-ranged structures, which is the case for the majority of the structures in the training set. (3) The regularization of r-space effective cluster interactions allow to include much larger number of clusters, which enhances the fitting capability. In this work, Kang Wang et al. from the Department of Materials Science and Engineering, University of Virginia, used machine learning and generalized MSCE to systems with multiple sublattices by formulating compatible reciprocal space interactions and combined with a crystal-symmetry-agnostic algorithm for the calculation of constituent strain energy. This generalized approach was then demonstrated in a hypothetical HCP system and Mg-Zn alloys. The current MSCE can significantly improve the accuracy of the energy parameterization and account for all the fully relaxed structures regardless of lattice distortion. The generalized MSCE method makes it possible to simultaneously analyze the short- and long-ranged configuration-dependent interactions in crystalline materials with arbitrary lattices with the accuracy of typical first-principles methods. This work has promoted the applicability of MSCE method and is of great significance for the development of materials science. 
任意晶格的混合空间团簇展开方法

材料中的短程化学相互作用与长程相互作用在相稳定性和形貌方面发挥重要作用。给定少数相干结构的总能量可以通过团簇扩展(CE)的方法得到。然而,基于密度泛函理论(DFT)的CE方法,对于长程应变相互作用是具有挑战性的。通过在r空间和k空间中对短程与长程相互作用分别建模,在CE中加入长程应变相互作用,这种方法称为混合空间团簇扩展(MSCE)。与r-空间CE相比,MSCE方法具有较高的精度:(1)由于大小不匹配而导致的组成应变能的长范围限制被明确地纳入使用k空间形式。(2)长程交互作用的衰减可以适应于中程结构,这是在训练集中的大多数结构的情况。(3)r空间有效团簇相互作用的正则化允许包含更多的团簇,从而提高了拟合能力。然而,MSCE的应用较少,仅限于在单个亚晶格上具有立方晶体对称的二元合金。在本工作中,来自于弗吉尼亚大学材料科学与工程系的Kang Wang等人,通过建立相容的互易空间相互作用,结合晶体对称无关的算法,通过机器学习将MSCE推广到具有多个子晶格的系统。这种广义的方法随后在一个假设的六方最密堆积体系和镁锌合金中得到了证明。该MSCE可以显著提高能量参数化的精度,并考虑到所有完全弛豫的结构,而不考虑晶格失真。广义MSCE方法使同时分析任意晶格晶体材料中短程和长程结构依赖的相互作用成为可能,准确性可比肩第一性原理方法。本工作对推广了MSCE方法的适用范围,对材料学的发展具有重要的意义。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050