首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy
发布时间:2023-09-25

Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy

   Panithan Sriboriboon, Huimin Qiao, Owoong Kwon, Rama K. Vasudevan, Stephen Jesse & Yunseok Kim 
 

    npj Computational Materials 9: 28 (2023)
   doi.org/10.1038/s41524-023-00982-0
    Published online: 28 February 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Hafnium oxide-based ferroelectrics have been extensively studied because of their existing ferroelectricity, even in ultra-thin film form. However, studying the weak response from ultra-thin film requires improved measurement sensitivity. In general, resonance-enhanced piezoresponse force microscopy (PFM) has been used to characterize ferroelectricity by fitting a simple harmonic oscillation model with the resonance spectrum. However, an iterative approach, such as traditional least squares (LS) fitting, is sensitive to noise and can result in the misunderstanding of weak responses. In this study, we developed the deep neural network (DNN) hybrid with deep denoising autoencoder (DDA) and principal component analysis (PCA) to extract resonance information. The DDA/PCA-DNN improves the PFM sensitivity down to 0.3?pm, allowing measurement of weak piezoresponse with low excitation voltage in 10-nm-thick Hf0.5Zr0.5O2 thin films. Our hybrid approaches could provide more chances to explore the low piezoresponse of the ultra-thin ferroelectrics and could be applied to other microscopic techniques.
摘要:  以氧化铪为基础的铁电材料在超薄膜形式下仍具有铁电性,得到广泛研究。然而,研究超薄薄膜的弱响应需要改进测量的灵敏度。通常情况下,人们采用谐振增强的压电响应力显微镜(PFM),来拟合具有谐振谱的简单谐振振荡模型,从而表征铁电性。然而,目前的迭代方法,如传统的最小二乘(LS)拟合,对噪声敏感,可能导致对弱响应的误解。在本研究中,我们开发了深度神经网络(DNN)与深度去噪自编码器(DDA)和主成分分析(PCA)相结合的方法,用来提取谐振信息。DDA/PCA-DNN将PFM的灵敏度提高到0.3 pm,并允许在10纳米厚的Hf0.5Zr0.5O2薄膜中使用低激发电压来测量弱压电响应。我们的混合方法可以为探索超薄铁电材料的低压电响应提供更多机会,并可应用于其他显微技术。
Editorial Summary

A deep learning method for exploring low piezoresponse of ultra-thin ferroelectrics

Ferroelectric materials are of great interest because of their intriguing physical properties, such as their bi-stable polarization states and fast switching speed. Since reporting fluorite ferroelectrics in 2011, extensive studies have been performed for exploring and improving the ferroelectricity of these materials, for example, HfO2, Hf0.8Zr0.2O2, Al: HfO2, and ZrO2, because of their existing ferroelectricity even in less than 10?nm thin films. The issues with sensitivity and efficiency in traditional PFM methods and resonance-enhanced PFM techniques cannot be ignored. For example, if the piezoresponse is weak because of the ultra-thin material, it can be difficult to accurately analyze the resonance because of a low SNR. In the challenging noisy environments, the fitting results of the methods before can still be poor, eventually causing a misinterpretation. So far, the rapid fitting method capable of handling noise has remained challenging for extracting of resonance information. Therefore, it is highly desirable to explore an accurate and efficient approach to address the functional fitting issue. In this study, Panithan Sriboriboon et al from the School of Materials Science and Engineering, Sungkyunkwan University, demonstrated an approach based on deep neural network (DNN) hybrid with deep denoising autoencoder (DDA) and principal component analysis (PCA) for enhanced FM sensitivity. The DNN combines denoising elements without the need for further optimization by the least-squares (LS) method. The DDA and PCA were assigned for the noise reduction task, and then the DNN was applied to the denoised dataset. These noise-reducing elements directly addressed noisy outliers to improve the SNR, resulting in increased PFM sensitivity. These implemented workflows were validated using ferroelectric model samples of periodically poled lithium niobate (PPLN) and 10?nm-thick Hf0.5Zr0.5O2 (HZO) thin films. Compared to the traditional LS method and a previously reported DNN-LS method, the proposed workflows of DDA-DNN and PCA-DNN remarkably improved the SNR and PFM sensitivity. In particular, the results for HZO thin films presented the feasibility of exploring very weak piezoresponse. The PCA-DNN approach has successfully extracted the low piezoresponse, allowing switching events of the HZO thin films to be observed using a low excitation voltage. Besides, the approach reduced the time necessary for the evaluation of resonance information, providing a faster and more accurate resonance analysis, which especially important when fast feedback is required to the instrument to enable automated and autonomous experiments. 
测量超薄铁电材料低压电响应的深度学习方法

铁电材料因其奇特的物理性质而备受关注,如其双稳偏极化态和快速切换速度等。自2011年报道萤石铁电材料以来,人们对探索和改进这些材料的铁电性进行了大量研究,例如HfO2、Hf0.8Zr0.2O2、Al: HfO2和ZrO2等,这些材料即使在不到10纳米的薄膜中仍然具有铁电性。传统的压电响应力显微镜(PFM)和共振增强PFM技术被广泛应用于超薄铁电体的评估,但由于超薄材料的压电响应较弱,PFM在灵敏度和效率方面任存在问题。比如,由于超薄材料的低信噪比,很难准确地分析共振。在嘈杂环境中,传统的拟合方法结果可能会变得很差,最终导致错误。迄今为止,提取准确谐振信息、寻找能够处理噪声的快速拟合方法仍然具有挑战性。探索一种准确且高效的方法来解决功能拟合问题至关重要。在本研究中,来自韩国成均馆大学先进材料与工程学院的Panithan Sriboriboon等人,报道了一种深度神经网络(DNN)与深度去噪自编码器(DDA)和主成分分析(PCA)相结合的方法,显著地提高了PFM的灵敏度。该方法结合去噪元素,无需进一步通过最小二乘方法进行优化。DDA和PCA被用于降噪任务,然后将DNN应用于去噪后的数据集。作者将这些降噪元件直接处理噪声异常值,以提高信噪比,从而提高PFM灵敏度。作者利用周期性的极化铌酸锂和10nm厚的Hf0.5Zr0.5O2(HZO)薄膜铁电模型样品,验证了工作流程。与传统的最小二乘方法和先前报道的深度神经网络-最小二乘方法相比,该工作所提出的DDA-DNN和PCA-DNN的工作流程显著提高了信噪比和PFM的灵敏度。对HZO薄膜的研究结果表明,探索非常弱的压电响应可行。PCA-DNN方法成功提取了低压电响应,观察到了在低激发电压下HZO薄膜的切换。此外,该方法还减少了用于评估谐振信息所需的时间,提供更快速和更准确的谐振分析,在仪器需要快速反馈以实现自动化和自主实验时尤为重要。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050