首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Resolution-enhanced X-ray fluorescence microscopy via deep residual networks
发布时间:2023-11-08

Resolution-enhanced X-ray fluorescence microscopy via deep residual networks

   Longlong Wu, Seongmin Bak, Youngho Shin, Yong S. Chu, Shinjae Yoo, Ian K. Robinson & Xiaojing Huang     
 

    npj Computational Materials 9: 41 (2023)
   doi.org/10.1038/s41524-023-00995-9
    Published online: 25 March 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Multimodal hard X-ray scanning probe microscopy has been extensively used to study functional materials providing multiple contrast mechanisms. For instance, combining ptychography with X-ray fluorescence (XRF) microscopy reveals structural and chemical properties simultaneously. While ptychography can achieve diffraction-limited spatial resolution, the resolution of XRF is limited by the X-ray probe size. Here, we develop a machine learning (ML) model to overcome this problem by decoupling the impact of the X-ray probe from the XRF signal. The enhanced spatial resolution was observed for both simulated and experimental XRF data, showing superior performance over the state-of-the-art scanning XRF method with different nano-sized X-ray probes. Enhanced spatial resolutions were also observed for the accompanying XRF tomography reconstructions. Using this probe profile deconvolution with the proposed ML solution to enhance the spatial resolution of XRF microscopy will be broadly applicable across both functional materials and biological imaging with XRF and other related application areas.
摘要:  多模态硬X射线扫描探针显微镜已被广泛用于功能材料研究中,提供了多种对比机制。例如,结合印刷术与X射线荧光(XRF)显微镜可同时揭示结构和化学性质。虽然照相可以实现衍射限制的空间分辨率,但XRF的分辨率受X射线探针大小的限制。在这里,我们开发了一个机器学习(ML)模型,通过解耦射线探针与XRF信号的影响来克服这个问题。对模拟和实验XRF数据,均观察到了增强的空间分辨率,显示出优于不同纳米尺寸X射线扫描XRF方法的性能。在伴随的XRF断层扫描重建中也观察到了增强的空间分辨率。利用这种探针轮廓与提出的ML方案进行反卷积,提高了XRF显微镜的空间分辨率,将广泛适用于功能材料、XRF生物成像及其他相关应用领域。
Editorial Summary

Machine Learning enhances the resolution of X-ray fluorescence 

Accurately resolving elemental distributions and morphological information inside functional materials at the nanoscale is critical for understanding their physical and chemical properties and for investigating the related device performances. As a powerful coherent imaging technique, X-ray ptychography can reconstruct complex phase information with high spatial resolution from coherent diffraction patterns of the functional materials, measured with overlapped X-ray probe positions. In particular, X-ray fluorescence (XRF) can provide intrinsic trace element distributions within materials. However, XRF is very sensitive to the incident X-ray beam profile information, resulting in lower spatial resolution than a ptychographic image from the same scanning experiment. For a scanning-probe XRF experiment, the resolution of the obtained XRF image is mainly limited by the size of the used X-ray beam profile, resulting from the convolution between the X-ray beam profile and the local illuminated region. Recently, the deep learning method has shown remarkable potential for solving many computational imaging problems, but the application of machine learning (ML) method to solve the convolutional problem between the X-ray beam profile and the XRF image is still a nascent field. In this work, Longlong Wu et al. from Brookhaven National Laboratory, demonstrated an ML-based method to reconstruct super-resolved XRF images using multimodal raw XRF and ptychography data, measured simultaneously. They proposed a residual dense network (RDN) model, which does not require numerical modeling and is instead based on training a generative RDN model to transform the low-resolution XRF image, limited by its X-ray probe profile, to a super-resolved one. Both simulated and experimental data were used to demonstrate the performance of RDN model to enhance the spatial resolution of XRF images as well as the related 3D tomographic reconstructions. Experiments demonstrated that compared with state-of-the-art conventional scanning methods, RDN approach can achieve better spatial resolution. The ML-enhanced method presented in this work will provide a new path for imaging both biological and functional materials via the scanning XRF method, which reveals element-specific chemical distributions in 3D. 
机器学习提升X射线荧光分辨率

纳米尺度上准确解析功能材料内部的元素分布和形态信息,对理解材料的物理和化学性质以及研究相关器件性能都至关重要。作为一种强大的相干成像技术,X射线叠层成像技术可以通过重叠的X射线探头位置测量,从功能材料的相干衍射图样中重建具有高空间分辨率的复杂相位信息。特别地,X射线荧光(XRF)可以提供材料内固有的微量元素分布。然而,XRF对入射X射线束轮廓信息非常敏感,导致空间分辨率低于同一扫描实验的扫描图像。对于扫描探针XRF实验,获得的XRF图像的分辨率主要受所使用的X射线轮廓大小的限制,这是由X射线轮廓与局部照明区域卷积产生的结果。近年来,深度学习方法在解决许多计算图像问题方面显示出了显著的潜力。应用ML方法来解决X射线光束轮廓与XRF图像之间的卷积问题仍然是一个新兴的领域。在本工作,来自美国布鲁克海文国家实验室的Longlong Wu等人,展示了一种基于机器学习的方法,使用同时测量的多模态原始XRF数据和叠层成像数据来重构超分辨的XRF图像。他们提出了残差致密网络(RDN)模型,该模型不需要数值建模,而是基于训练生成的RDN模型,将受其X射线探针轮廓限制的地分辨 XRF图像转换为超分辨图像。使用模拟和实验数据,作者证明了RDN模型对提高XRF图像的空间分辨率及相关三维层析重建的优异性能。实验表明,相比于最先进的传统扫描方法,RDN方法可以实现更好的空间分辨率。该工作提出的ML增强方法,为扫描XRF在生物和功能材料成像等方面的应用提供一条新的途径,揭示了三维元素特异性化学分布,将广泛适用于功能材料和生物XRF等相关应用领域中。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050