首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Tailoring magnetic hysteresis of additive manufactured Fe-Ni permalloy via multiphysics-multiscale simulations of process-property relationships
发布时间:2023-11-08

Tailoring magnetic hysteresis of additive manufactured Fe-Ni permalloy via multiphysics-multiscale simulations of process-property relationships

   Yangyiwei Yang, Timileyin David Oyedeji, Xiandong Zhou, Karsten Albe & Bai-Xiang Xu     
 

    npj Computational Materials 9: 103 (2023)
   doi.org/10.1038/s41524-023-01058-9
    Published online: 12 June 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Designing the microstructure of Fe-Ni permalloy produced by additive manufacturing (AM) opens new avenues to tailor its magnetic properties. Yet, AM-produced parts suffer from spatially inhomogeneous thermal-mechanical and magnetic responses, which are less investigated in terms of process modeling and simulations. We present a powder-resolved multiphysics-multiscale simulation scheme for describing magnetic hysteresis in AM-produced material, explicitly considering the coupled thermal-structural evolution with associated thermo-elasto-plastic behaviors and chemical order-disorder transitions. The residual stress is identified as the key thread in connecting the physical processes and phenomena across scales. By employing this scheme, we investigate the dependence of the fusion zone size, the residual stress and plastic strain, and the magnetic hysteresis of AM-produced Fe21.5Ni78.5 on beam power and scan speed. Simulation results also suggest a phenomenological relation between magnetic coercivity and average residual stress, which can guide the magnetic hysteresis design of soft magnetic materials by choosing appropriate processing parameters.
摘要:  通过增材制造(AM)来设计Fe-Ni合金的微观结构,为调控其磁性能开辟了新的途径。然而,AM的零件在空间上存在非均匀的热机械和磁响应,且这方面的工艺建模和仿真研究相对较少。我们提出了一个以粉末为分辨率的多物理多尺度仿真方案,用于描述AM材料中的磁滞回线,并考虑了热-结构演化与相关的热弹性塑性行为,以及化学有序-无序转变的耦合。残余应力被确定为连接各尺度上的物理过程和现象的关键要素。通过采用这个方案,我们研究了AM的Fe21.5Ni78.5 材料的熔合区大小、残余应力和塑性应变、以及磁滞回线与光束功率和扫描速度之间的依赖。仿真结果表明,磁铁矫顽力与平均残余应力之间存在一种现象级关系,可以通过选择适当的加工参数来指导软磁性材料的磁滞回线设计。
Editorial Summary

Magnetic hysteresis of additive manufactured Fe-Ni permalloy: A multiscale simulation framework

The Fe-Ni permalloy has been widely studied in recent decades owing to its extraordinary magnetic permeability, low coercivity, high saturation magnetization, mechanical strength, and magneto-electric characteristics. In recent years, the additive manufacturing (AM) technologies have emerged as an attractive way for designing soft magnetic materials. Recently, it was shown that the residual stress caused by AM and the underlying phase transitions could be key for tuning the coercivity in an AM-processed Fe-Ni permalloy. However, due to the delicate interplay of process conditions and resulting properties, it is still difficult to understand the residual stress in AM and its interactions with other physical processes, such as thermal and mass transfer, grain coarsening and coalescence, and phase transition. For instance, the temperature gradient mechanism explains the generation of residual stress by considering the heating mode and the cooling mode by employing the idealized homogeneous layers, which is significantly different from the AM conditions. In this work, Yangyiwei Yang et al from the Institute of Materials Science, Technische Universit?t Darmstadt, developed a powder-resolved multiphysics-multiscale simulation scheme to investigate the hysteresis tailoring of Fe-Ni permalloy by AM under a scenario close to practical experiments. The underlying physical processes, including the coupled thermal-structural evolution, chemical order-disorder transitions, and associated thermo-elasto-plastic behaviors, were explicitly considered and bridged by accounting for their chronological-spatial differences. The influences of processing parameters (notably the beam power and scan speed) were analyzed and discussed on distinctive aspects, including the size of the fusion zone, the development of residual stress and accumulated plastic strain, the = ’ transition under the residual stress, and the resulting magnetic coercivity of manufactured parts. This work provides transferable insights in selecting processing parameters and optimizing routine for producing permalloy using AM, and delivers a comprehensive understanding of tailoring the hysteresis of soft magnetic materials in unconventional processing. 
增材制造Fe-Ni合金的磁滞特性—多尺度仿真框架

近几十年来,Fe-Ni合金由于其出色的磁导率、低矫顽力、高饱和磁化、机械强度和磁电特性,受到了广泛研究。近年来,增材制造(AM)技术已成为设计软磁性材料的一种途径。有研究表明,由AM引起的残余应力和潜在的相变可能是调节AM加工Fe-Ni合金矫顽力的关键因素。然而,由于工艺条件和所产生性质之间的细微相互作用,理解AM中的残余应力及其与其他物理过程(如热传递、物质传递、晶粒粗化与合并以及相变)的相互作用仍然非常困难。例如,温度梯度机制通过考虑采用理想均匀层来生成残余应力,考虑加热方式和冷却方式,与合金通过AM的实验条件明显不同。在本工作中,来自达姆施塔特工业大学材料科学研究中心的Yangyiwei Yang等人,开发了一种粉末分辨的多物理多尺度仿真方案,用以研究在接近实验情况下,如何通过调控AM的残余应力来对Fe-Ni合金的磁滞回线进行调节。通过考虑时间-空间差异,作者仔细研究了潜在的物理过程,包括耦合的热结构演化、化学有序无序转变和相关的热弹塑性行为。他们从不同的方面分析和讨论了工艺参数(尤其是光束功率和扫描速度)的影响,包括熔合区的大小、残余应力和累积塑性应变的发展、残余应力下的 = ’转变以及由此产生的制造零件的矫顽磁力等。该工作为AM生产坡莫合金的的工艺参数和优化方案方面的选择上提供了指导,并对在非常规工艺中调控软磁材料的磁滞特性提供了全面的理解。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050