首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Topology-enhanced mechanical stability of swelling nanoporous electrodes
发布时间:2023-11-08

Topology-enhanced mechanical stability of swelling nanoporous electrodes

   Benjamin E. Grossman-Ponemon, Ataollah Mesgarnejad & Alain Karma      
 

    npj Computational Materials 9: 103 (2023)
    doi.org/10.1038/s41524-023-01047-y
    Published online: 29 June 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Materials like silicon and germanium offer a 10-fold improvement in charge capacity over conventional graphite anodes in lithium-ion batteries but experience a roughly threefold volume increase during lithiation, which challenges ensuring battery integrity. Nanoporous silicon, created by liquid-metal-dealloying, is a potentially attractive anode design to mitigate this challenge, exhibiting both higher capacity and extended cycle lifetimes. However, how nanoporous structures accommodate the large volume change is unknown. Here, we address this question by using phase-field modeling to produce nanoporous particles and to investigate their elastoplastic swelling behavior and fracture. Our simulations show that enhanced mechanical stability results from the network topology consisting of ligaments connected by bulbous, sphere-like nodes. The ligaments forcefully resist elongation while the nodes, behaving like isolated spherical particles, experience large stresses driving fracture. However, being smaller compared to a sphere of the same volume as the entire nanoporous particle, the nodes are more protected against fracture.
摘要:  在锂离子电池中,硅、锗等材料的充电容量比传统石墨阳极高10倍,但在锂化过程中,其体积膨胀大约为原来的三倍,这对保持电池的完整性提出了挑战。由液态金属去合金化制备而成的纳米多孔硅是一种极富吸引力的阳极设计,具有更高的充电容量和更长的循环寿命,有望应对这一挑战。然而,纳米多孔结构如何适应大的体积变化尚不清楚。在本文中,我们通过相场模拟产生纳米多孔颗粒,并研究其弹塑性膨胀行为和断裂来解决这一问题。我们的模拟结果表明,增强的力学稳定性来源于由球根状、球状节点连接的韧带所组成的网络拓扑结构。韧带能够有力地抵抗伸长,而节点的行为类似于孤立的球形颗粒,承受驱动断裂的大应力。然而,与同体积球体相比,纳米多孔颗粒的节点更小,因而更容易防止断裂。
Editorial Summary

Swelling behavior of nanoporous electrodes: Topology-enhanced mechanical stability

With approximately ten times greater gravimetric charge capacity over conventional carbon-based anodes, silicon and germanium have emerged as attractive anode materials for lithium-ion batteries. Instead of lithium ion intercalation, such anodes operate via alloying, transforming crystalline or amorphous Si/Ge (c- or a-Si/Ge) into an amorphous phase (a-LixSi or a-LixGe). However, along with improved charge capacity, the alloying process produces a nearly 300% volume change in the anode, which can lead to mechanical failure, thereby preventing these materials from seeing their full potential. Previous studies have experimented with anode shape as a means to improve stability. Using processes such as liquid metal dealloying, vacuum distillation, and annealing and etching, it is possible to create smooth anode geometries with high surface area and thin ligaments. Such nanoporous structures have been shown to possess excellent stability, which is believed to be due to the structures’ ability to accommodate the large volume expansion using pore space. However, beyond the high-level observations of pore space accommodation, there is limited insight into the mechanisms which underly the exceptional performance of nanoporous anodes. In this work, a group led by Prof. Alain Karma from the Center for Interdisciplinary Research on Complex Systems, Department of Physics, Northeastern University, utilized a multi-physics mechanical model—incorporating phase transformation, elastoplastic deformation, and fracture—to reveal insights into the swelling behavior of nanoporous structures during lithium insertion. They simulated nanoporous specimens with realistic shapes created through simulation of liquid metal dealloying, and compared these shapes with idealized geometries. Their simulations showed that enhanced mechanical stability results from the network topology consisting of ligaments connected by bulbous, sphere-like nodes. The ligaments forcefully resist elongation while the nodes, behaving like isolated spherical particles, experience large stresses driving fracture. However, being smaller compared to a sphere of the same volume as the entire nanoporous particle, the nodes are more protected against fracture. This work highlights how geometric features of the nanoporous particles affect their mechanical behavior. As the mechanical model in this work can be extended to include multiple materials, it may be used to better understand the swelling behavior of composite designs. 
纳米多孔电极的膨胀:拓扑增强力学稳定性

作为锂离子电池中极具吸引力的阳极材料,硅/锗的充电容量大约是传统碳基阳极的10倍。不同于锂离子插层,硅/锗阳极的工作原理是合金化,将晶态或非晶态硅/锗(c-Si/Ge或a-Si/Ge)转化为非晶相(a-LixSi或a-LixGe)。然而,硅/锗阳极充电容量提高的同时,合金化过程使阳极发生近300%的体积变化。这可能会导致力学性能失效,从而阻碍了这些材料充分发挥其潜在性能。过去的研究曾尝试通过改变阳极形状来提高稳定性。研究发现,使用液态金属去合金化、真空蒸馏、退火和刻蚀等工艺,可以构建具有高表面积和薄韧带的光滑阳极几何形状。这种纳米多孔结构已被证明具有良好的稳定性,人们认为这是由于其孔隙结构能够适应大体积膨胀。然而,人们对纳米多孔阳极优异性能背后的机制知之甚少。在本工种中,来自美国东北大学物理系复杂系统跨学科研究中心的Alain Karma教授团队,采用多物理力学模型,综合相变、弹塑性变形和断裂,揭示了纳米多孔结构在锂插入过程中的膨胀行为。他们通过模拟液态金属去合金化,构建了具有真实形状的纳米多孔样品,并将这些形状与理想的几何形状进行比较。模拟结果表明,增强的力学稳定性来源于由球根状、球状节点连接的韧带所组成的网络拓扑结构。韧带能够有力地抵抗伸长,而节点的行为类似于孤立的球形颗粒,承受驱动断裂的大应力。然而,与同体积球体相比,纳米多孔颗粒的节点更小,因而更容易防止断裂。本工作阐明了纳米多孔颗粒的几何特征将如何影响其力学行为。该工作采用的力学模型能够扩展到多材料体系,因而可以被用来更好地理解复合材料设计中的膨胀行为。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050