首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A unified field theory of topological defects and non-linear local excitations
发布时间:2023-11-08

A unified field theory of topological defects and non-linear local excitations

Vidar Skogvoll, Jonas Ronning, Marco Salvalaglio & Luiza Angheluta         
    npj Computational Materials 9: 122(2023)
    doi.org/10.1038/s41524-023-01077-6   
    Published online: 13 July 2023  
   Abstract| Full Text | PDF OPEN  
    
Abstract:Topological defects and smooth excitations determine the properties of systems showing collective order. We introduce a generic non-singular field theory that comprehensively describes defects and excitations in systems with O(n) broken rotational symmetry. Within this formalism, we explore fast events, such as defect nucleation/annihilation and dynamical phase transitions where the interplay between topological defects and non-linear excitations is particularly important. To highlight its versatility, we apply this formalism in the context of Bose-Einstein condensates, active nematics, and crystal lattices.  
摘要: 拓扑缺陷和平滑激发决定了展现集体秩序系统的性质。我们引入了一个通用的非奇异场论,全面描述了具有O(n)破缺旋转对称性系统中的缺陷和激发。在该理论下,我们研究了快速事件,比如缺陷的成核/湮灭和动力学相变,其中的拓扑缺陷和非线性激发之间的相互作用尤为重要。为了突出其多功能性,我们将该理论应用于玻色-爱因斯坦凝聚体、活性向列液晶和晶格结构中。  
Editorial Summary  

A theoretical framework for describing topological defects and local excitations

Topological defects are hallmarks of systems exhibiting collective order. They are widely encountered from condensed matter, including biological systems, to elementary particles, and the very early Universe. The small-scale dynamics of interacting topological defects are crucial for the emergence of large-scale non-equilibrium phenomena, such as quantum turbulence in superfluids, spontaneous flows in active matter, or dislocation plasticity in crystals. In-depth understanding and tailoring of collective behaviors require a unified description of defects associated with symmetry breaking and the non-topological excitations of ground states. Due to the highly non-linear nature, it still remains poorly understood. In this work, Vidar Skogvoll et al. from the Department of Physics, University of Oslo, presented a formalism to describe the evolution of ordered systems from the dynamics of their topological defects and their interactions with smooth but localized excitations. The versatility of the approach allows them to gain insight into defect annihilation, the onset of collective behavior, and perspectives on defect structures. In particular, the authors applied the method to systems of increasing topological and dynamical complexity. They studied the motion of isolated vortices in Bose-Einstein condensates, which, in addition to confirming that the method correctly identifies topological defects and their velocities, sheds light on changes in quantum pressure arising from the interplay between phase slips and shock waves. For active nematics, they observed that the onset of active turbulence as a melting of periodic arches is signaled by the formation of bound dipoles of nematic defects at the core of dislocations in the nematic arches. Although the whole framework is presented for systems with one broken rotational symmetry, it is a powerful tool that can be generalized to systems with multiple broken symmetries and reveal hidden hierarchies of topological defects associated with each symmetry, laying the foundation for unified theories in systems characterized by collective behaviors. 
描述拓扑缺陷与局部激发的理论框架            

拓扑缺陷是展现集体秩序系统的特征标志。它们广泛存在于凝聚态物质中,包括生物系统、基本粒子以及早期宇宙等各个领域。相互作用的小尺度拓扑缺陷动力学对于大尺度非平衡现象的出现至关重要,例如超流体中的量子湍流、活性物质中的自发流动、或晶体中的位错塑性。深入理解和调控集体行为,需要对与破缺对称性相关的缺陷以及基态的非拓扑激发进行统一描述。然而,由于其高度非线性,对它的理解还非常有限。在这项研究中,来自挪威奥斯陆大学物理系的Skogvoll等人,提出了一套理论框架,能有效描述有序系统拓扑缺陷演化及缺陷与平滑但局部激发的相互作用。理论框架的多功能性使作者能够深入理解缺陷湮灭、集体行为的起始以及缺陷结构。作者将该理论应用于拓扑和动力学复杂性不断增加的系统。他们研究了玻色-爱因斯坦凝聚体中孤立涡旋的运动,不仅确认该方法能正确识别了拓扑缺陷及其速度外,还揭示了由相位滑移和激波之间的相互作用引起的量子压力变化。对于活性向列液晶,他们观察到了活性湍流的开始,标志着周期性拱的融化,这是通过在向列拱的位错核心形成束缚偶极子来实现的。尽管整个理论框架是为具有一个破缺旋转对称性的系统设计的,但它是一个强大的工具,可以推广到具有多个破缺对称性的系统,并揭示了与每个对称性相关的拓扑缺陷的隐藏层次,为集体行为特征的系统中的统一理论奠定了基础。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050