首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
AI powered, automated discovery of polymer membranes for carbon capture
发布时间:2023-11-08

AI powered, automated discovery of polymer membranes for carbon capture

Ronaldo Giro, Hsianghan Hsu, Akihiro Kishimoto, Toshiyuki Hama, Rodrigo F. Neumann, Binquan Luan, Seiji Takeda, Lisa Hamada & Mathias B. Steiner           
    npj Computational Materials 9: 133(2023)
    doi.org/10.1038/s41524-023-01088-3   
    Published online: 29 July 2023  
   Abstract| Full Text | PDF OPEN  
          
Abstract:The generation of molecules with artificial intelligence (AI) or, more specifically, machine learning (ML), is poised to revolutionize materials discovery. Potential applications range from development of potent drugs to efficient carbon capture and separation technologies. However, existing computational discovery frameworks for polymer membranes lack automated training data creation, generative design, and physical performance validation at meso-scale where complex properties of amorphous materials emerge. The methodological gaps are less relevant to the ML design of individual molecules such as the monomers which constitute the building blocks of polymers. Here, we report automated discovery of complex materials through inverse molecular design which is informed by meso-scale target features and process figures-of-merit. We have explored the multi-scale discovery regime by computationally generating and validating hundreds of polymer candidates designed for application in post-combustion carbon dioxide filtration. Specifically, we have validated each discovery step, from training dataset creation, via graph-based generative design of optimized monomer units, to molecular dynamics simulation of gas permeation through the polymer membranes. For the latter, we have devised a representative elementary volume (REV) enabling permeability simulations at about 1000  the volume of an individual, ML-generated monomer, obtaining quantitative agreement. The discovery-to-validation time per polymer candidate is on the order of 100?h using one CPU and one GPU, offering a computational screening alternative prior to lab validation.  
摘要: 通过人工智能(AI),或者更具体地说,通过机器学习(ML)的分子生成将彻底改变材料的发掘。潜在的应用范围包括从开发有效的药物到高效的碳捕获和分离技术。然而,现有的聚合物膜计算发现框架,缺乏自动化训练数据创建、生成设计和介观尺度下非晶材料出现的复杂物理性能的验证。方法上的差别与单个分子的ML设计相关性较小,这里的单个分子如构成聚合物构建模块的单体。在这里,我们报告了根据介观尺度的目标特征和性能参数,通过逆向分子设计实现复杂材料的自动发掘。我们通过计算生成和验证数百种设计用于燃烧后二氧化碳过滤的候选聚合物,探索了多尺度的发掘机制。具体来说,我们验证了每个发掘步骤,从通过基于图的优化单体单元生成设计创建训练数据集,到通过聚合物膜气体渗透的分子动力学模拟。对于后者,我们提出了一个具有代表性的基本体积(REV),可以在1000 独立的、机器学习生成的单体上进行渗透性模拟,并定量上获得了一致性。使用一个CPU和一个GPU,每个候选聚合物的发现到验证的时间约为100小时,在实验室验证之前提供了一个计算筛选的替代方案。  
Editorial Summary  

AI powered design of polymer membranes for carbon capture

The discovery of new materials has been a time consuming and resource intensive effort. The following trial-and-error approach is typically employed: identifying known materials with properties similar to the new material’s target properties and then modifying or combining them for achieving the desired outcome. The approach is driven by a specialist’s knowledge, laboratory experimentation, and it can take years to yield results. The computer revolution has brought about powerful simulation techniques, such as the density functional theory (DFT) and high-throughput computational materials screening and design methods (HCMSD), have enabled substantial speed-up of the process. However, one limitation of HCMSD is that it usually relies on time consuming ab initio calculations, such as DFT simulations. However, the large number of computations required for probing the phase space or performing materials screening can render HCMSD impractical. In recent years, artificial intelligence (AI) powered material design attracted considerable attention. Machine learning (ML) uses existing experimental and simulation databases to achieve faster material screening and design. In particular, inverse materials design based on ML method shows great potential, which relies on an algorithm that creates optimized molecular structures based on a pre-defined feature vector containing a set of materials target properties. In this work, Ronaldo Giro et al. from IBM Research, employed reverse material design method based on ML to establish a fully automated silicon material design process and completed the design and physical validation of polymer membrane materials that filter carbon dioxide under realistic temperatures and pressures. The authors established a data set based on the monomer structure, polymer glass transition temperature, half-decomposition temperature and carbon dioxide permeability to implement graph-based design of optimized monomer units and conduct physical validation of polymer membrane gas permeation through molecular dynamics simulations. This work opens a pathway for advancing ML-generative design beyond small-molecule applications and will substantially accelerate the discovery of complex materials for scaled applications.
人工智能驱动的碳捕获聚合物膜设计            

新材料的开发一直是一项耗时且资源密集型的过程。以往,人们通常采用试错方法进行开发:首先识别具有与新材料目标性能相似的已知材料,然后对它们进行调整或组合以达到预期的结果。该方法是由研究者的知识和实验室里的实验驱动的,可能需要数年时间才能产生结果。计算机的革命带来了强大的材料模拟技术,如密度泛函理论(DFT)和高通量计算材料筛选和设计,使材料的研发有实质性的加速。然而,高通量计算材料筛选和设计的一个局限性在于它通常依赖于耗时的从头计算,如DFT模拟,相空间的探索和材料筛选所需的大量计算使高通量计算材料筛选和设计不切实际。近年来,人工智能驱动的材料设计备受关注。机器学习方法采用已有的实验和模拟数据库,可以更快的实现材料的筛选和设计。特别是基于机器学习方法的逆向材料设计,展现出了巨大潜力。在本工作中,来自IBM实验室的Ronaldo Giro等人,运用基于机器学习的逆向材料设计方法,建立了完全自动化的硅材料设计流程,完成了对现实温度和压力下过滤二氧化碳聚合物膜材料的设计和物理验证。作者根据单体结构、聚合物玻璃化转变温度、半分解温度和二氧化碳渗漏率建立了数据集,实现基于图的单体单元优化设计,并通过分子动力学模拟对聚合物膜气体渗透进行物理检验。该工作为推进能实际应用的小分子材料机器学习研究开辟了道路,加速了材料设计和筛选,并将大大加快其他复杂材料的开发。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050