首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Deep material network via a quilting strategy: visualization for explainability and recursive training for improved accuracy
发布时间:2023-11-08

Deep material network via a quilting strategy: visualization for explainability and recursive training for improved accuracy

Dongil Shin, Ryan Alberdi, Ricardo A. Lebensohn & Remi Dingreville         
    npj Computational Materials 9: 128(2023)
    doi.org/10.1038/s41524-023-01085-6   
    Published online: 25 July 2023  
   Abstract| Full Text | PDF OPEN  
   
    
Abstract:Recent developments integrating micromechanics and neural networks offer promising paths for rapid predictions of the response of heterogeneous materials with similar accuracy as direct numerical simulations. The deep material network is one such approaches, featuring a multi-layer network and micromechanics building blocks trained on anisotropic linear elastic properties. Once trained, the network acts as a reduced-order model, which can extrapolate the material’s behavior to more general constitutive laws, including nonlinear behaviors, without the need to be retrained. However, current training methods initialize network parameters randomly, incurring inevitable training and calibration errors. Here, we introduce a way to visualize the network parameters as an analogous unit cell and use this visualization to “quilt” patches of shallower networks to initialize deeper networks for a recursive training strategy. The result is an improvement in the accuracy and calibration performance of the network and an intuitive visual representation of the network for better explainability.  
摘要: 结合了微观力学和神经网络的最新发展,为快速预测非均匀材料的响应提供了很有前途的途径,其精度与直接数值模拟相似。深层材料网络就是这样一种方法,其特点是多层网络和基于各向异性线弹性特性训练的微观力学构件。一旦经过训练,网络就像一个降阶模型,它可以将材料的行为外推到更通用的本构律,包括非线性行为,而不需要再训练。然而,目前的训练方法初始化网络参数是随机的,不可避免地会导致训练和校准误差。在此,我们引入了一种将网络参数可视化为类似的单元格的方法,并使用这种可视化来“拼接”较浅网络的片段,以初始化更深层的网络,从而实现递归训练策略。其结果是提高了网络的准确性和校准性能,并能直观地可视化地表示网络,以获得更好的可解释性。  
Editorial Summary  

Deep Material Network: Charm of the 'Quilting' Technique

Data-driven approaches and advances in machine-learning algorithms are emerging techniques sought out to speed up the computational modeling and time-to-solution predictions of microstructure and materials behavior. In computational mechanics, these techniques bypass computationally expensive direct numerical simulation (DNS) solvers, such as the finite element method, fast Fourier transform, or mesh-free solvers, by approximating the effective constitutive response of materials microstructures with surrogate models trained on stress-strain datasets. For example, recent studies have put forward such surrogate models capable of discovering unknown constitutive laws or rapidly predicting the effective nonlinear material’s behavior as well as path-dependent behavior of microstructures. These surrogate models are based on a variety of methods, including artificial neural networks, two-dimensional and three-dimensional image-based convolutional neural networks, cluster-based reduced-order models, and Gaussian process regression models. However, all of these methods rely heavily on computationally expensive microstructure-level simulations for a given and fixed material constitutive relation. In other words, these machine-learning models need to be retrained whenever the constitutive relation changes, limiting their extrapolation performance. In this work, a group led by Prof. R mi Dingreville from the Center for Integrated Nanotechnologies, Sandia National Laboratories, USA, demonstrated an approach to visualize the network parameters as an analogous unit cell and use this visualization to “quilt” patches of shallower networks to initialize deeper networks for a recursive training strategy. The result is an improvement in the accuracy and calibration performance of the network and an intuitive visual representation of the network for better explainability. The authors suggested that this visualization and recursive training strategy could be extended to other deep material network (DMN) architectures, which allows for the material orientation at the nodes to vary. This approach could also be used for other classes of microstructures, notably polycrystalline materials. Although the approach used in this study could be improved with a better refinement of the visualization of the network, such as the consideration of multiple microstructural length scales or the representation of the network as an actual microstructural representation of the DNS periodic unit cell, this work is a step towards better strategies for developing explainable DMN with improved accuracy.
深度材料网络:‘拼贴’技术的魅力            

数据驱动的方法和先进的机器学习算法是一种新兴的技术,旨在加速微观结构及材料行为计算建模和完成时间的预测。在计算力学中,通过由应力-应变数据集训练的代理模型,人们可以近似得到材料微结构的有效组成响应,从而避免昂贵的直接数值模拟方法(如有限元法、快速傅里叶变换或无网格求解器)。近期研究已提出了代理模型,能够发现未知的组成规律或快速预测材料的有效非线性行为及微结构的路径依赖行为。这些代理模型基于多种方法,包括人工神经网络、二维和三维基于图像的卷积神经网络、基于聚类的降维模型以及高斯过程回归模型。然而,所有这些方法都严重依赖于给定和固定的材料组成关系的计算昂贵的微观结构级模拟。换句话说,每当组成关系发生变化时,这些机器学习模型都需要重新训练,限制了它们的外推性能。在本文中,来自美国Sandia国家实验室基础纳米技术中心的R mi Dingreville教授团队,引入了一种将网络参数可视化为类似单元格的方法,并使用这种可视化来“拼接”较浅网络的片段,以初始化更深层的网络,从而实现递归训练策略。该策略提高了网络的准确性和校准性能,并能直观地可视化地表示网络,从而获得更好的可解释性。作者预期这种可视化和递归训练策略可以扩展到其他深度材料网络架构,也可用于其他类型的微观结构,特别是多晶材料。本研究中使用的方法可以通过更好地细化网络的可视化得到改进,例如考虑多个微观结构长度尺度或将网络表示为直接数值模拟周期性单元格的实际微观结构表示。这项工作是朝着为开发具有更高准确性的可解释DMN的更好策略迈出的重要一步。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050