首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Dynamical downfolding for localized quantum states
发布时间:2023-11-08

Dynamical downfolding for localized quantum states

Mariya Romanova, Guorong Weng, Arsineh Apelian & Vojtech Vlcek         
   npj Computational Materials 9: 126(2023)
    doi.org/10.1038/s41524-023-01078-5   
    Published online: 19 July 2023  
   Abstract| Full Text | PDF OPEN  
    
    
Abstract:We introduce an approach to treat localized correlated electronic states in the otherwise weakly correlated host medium. Here, the environment is dynamically downfolded on the correlated subspace. It is captured via renormalization of one and two quasiparticle interaction terms which are evaluated using many-body perturbation theory. We outline the strategy on how to take the dynamical effects into account by going beyond the static limit approximation. Further, we introduce an efficient stochastic implementation that enables treating the host environment with a large number of electrons at a minimal computational cost. For a small explicitly correlated subspace, the dynamical effects are critical. We demonstrate the methodology by reproducing optical excitations in the negatively charged NV center defect in diamond, that agree with experimental results.  
摘要: 我们引入了一种处理弱关联宿主介质中局域关联电子态的方法。这里,环境被动态向下折叠至关联子空间。我们使用多体微扰理论对一准粒子和二准粒子相互作用项进行估计,并将其重整化用以描述这一过程。我们概述了如何通过超越静态极限近似来考虑动力学效应。此外,我们还引入了一种高效的随机实现方法,能够以最小的计算成本处理具有大量电子的宿主环境。对于小型显式关联子空间,动力学效应至关重要。我们通过复现金刚石中带负电的NV色心的光激发演示了该方法,结果与实验一致。  
Editorial Summary  

Dynamical downfolding for localized quantum states

The ability to predict and computationally tackle electronic excitations is key for guiding the development of new materials in many areas ranging from quantum technologies to ultrafast electronics. In this context, materials hosting strongly coupled electronic states are particularly interesting, but they pose a significant challenge to theory. Fortunately, the most important contribution is, in many cases, limited to only a small range of electronic states, i.e., a subspace of the system. Therefore, a small explicitly correlated problem (solvable computationally) can be embedded in the remaining portion of the system, which is treated at a more approximate level. However, determining the correlated subspace is not always straightforward. Further, the strongly interacting states are coupled to the rest of the system, and the extent of the dynamical coupling depends on the size of the explicitly correlated region. The importance of the dynamical renormalization has been recognized and the constrained random phase approximation (cRPA) has become a standard in accounting for the dynamics of the environment outside of the correlated subspace. For technical reasons, a static limit approximation is ubiquitously applied, and cRPA calculations are computationally prohibitive for large systems. In this work, Mariya Romanova et al from the Department of Chemistry and Biochemistry of University of California, introduced an efficient stochastic cRPA (s-cRPA) approach and described a complementary strategy in which the weakly interacting environment is downfolded on the correlated subspace and the dynamical interactions are fully taken into account. It is captured via renormalization of one and two quasiparticle interaction terms which are evaluated using many-body perturbation theory. The authors outlined the strategy on how to take the dynamical effects into account by going beyond the static limit approximation. Further, s-cRPA enables treating the host environment with a large number of electrons at a minimal computational cost. For a small explicitly correlated subspace, the dynamical effects are critical. They demonstrated the methodology by reproducing optical excitations in the negatively charged NV center defect in diamond, that agree with experimental results. This work is a jumping-off point for future practical simulations of electronic excitations in localized quantum states. 
局域量子态的动力学下折叠            

预测和计算电子激发态的能力是指导从量子技术到超快电子学等众多领域中新材料发展的关键。在这方面,具有强耦合电子态的材料特别有趣,但其对理论的挑战性极高。幸运的是,在很多情况下,起重要贡献的仅限于系统的小部分电子态,即系统的一个子空间。因此,可将一个小型显式关联问题(计算上可行)嵌入到系统的剩余部分,并在一个近似程度更高的水平上处理。然而,确定关联子空间并不总是很简单。此外,强相互作用态与系统的其他部分耦合,耦合程度取决于关联区域的大小。尽管人们已经认识到动力学重整化的重要性,约束无规相近似(cRPA)也已经成为解释关联子空间外环境动力学的标准,但由于技术原因,静态极限近似仍被广泛应用;而对于大型系统,cRPA在计算上不被允许。在本工作中,来自美国加利福尼亚大学化学与生物化学系的Mariya Romanova等人,结合高效的随机cRPA(s-cRPA)方法,提出了一种互补策略。该策略将弱相互作用环境向下折叠到关联子空间中,并充分考虑了动力学相互作用。研究者使用多体微扰理论,对一准粒子和二准粒子相互作用项进行估计,并将其重整化用以描述这一过程。他们概述了如何通过超越静态极限近似来考虑动力学效应。此外,s-cRPA方法能够以最小的计算成本处理具有大量电子的宿主环境。对于小型关联子空间,动力学效应至关重要。研究者通过复现金刚石中带负电的NV色心的光激发演示了该方法,结果与实验一致。本工作是未来对局域量子态中电子激发的实际模拟的起点。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050