首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures
发布时间:2023-11-08

Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures 

Jan Ocenasek, Jan Minar & Jorge Alcala          
  
   npj Computational Materials 9: 118(2023)
    doi.org/10.1038/s41524-023-01069-6   
    Published online: 03 July 2023  
   Abstract| Full Text | PDF OPEN  
    
    
Abstract:The nexus between classic ferroelectricity and the structure of perovskite materials hinges on the concept of lattice disorder. Although the ordered perovskites display short-range displacements of the central cations around their equilibrium points, the lattice disorder dynamically unfolds to generate a myriad of distorted rhombohedral lattices characterized by the hopping of the central cations across <111> directions. It is discovered that the lattice disorder correlates with the emergence of minimum configuration energy <100> pathways for the central cations, resulting in spatially modulated ultrafast polarization nanocluster arrangements that are stabilized by the electric charge defects in the material. Through high-resolution phonon dispersion analyses encompassing molecular dynamics (MD) and density functional theory (DFT) simulations, we provide unequivocal evidence linking the hopping of central cations to the development of diffuse soft phonon modes observed throughout the phase transitions of the perovskite. Through massive MD simulations, we unveil the impact of lattice disorder on the structures of domain walls at finite-temperature vis- -vis collective activation and deactivation of <100> pathways. Furthermore, our simulations demonstrate the development of hierarchical morphotropic phase boundary (MPB) nanostructures under the combined influence of externally applied pressure and stress relaxation, characterized by sudden emergence of zig-zagged monoclinic arrangements that involve dual <111> shifts of the central cations. These findings have implications for tailoring MPBs in thin-film structures and for the light-induced mobilization of DWs. Avenues are finally uncovered to the exploration of lattice disorder through gradual shear strain application.  
摘要: 经典铁电性与钙钛矿材料结构之间的关系关键在于晶格无序的概念。尽管有序钙钛矿在其平衡点附近显示出中心阳离子的短程位移,但晶格无序动态展开,产生了无数扭曲的菱形晶格,其特征是中心阳离子在<111>方向上的跳跃。研究发现,晶格无序与中心阳离子最小构型能量<100>路径的出现相关,导致了由材料中电荷缺陷稳定的空间调制的超快极化纳米簇排列。通过包括分子动力学(MD)和密度泛函理论(DFT)模拟在内的高分辨率声子色散分析,我们提供了明确的证据,将中心阳离子的跳跃与钙钛矿相变过程中观察到的扩散软声子模式的发展联系起来。通过大规模MD模拟,我们揭示了晶格无序相对于<100>通路的集体激活和失活对畴壁结构的影响。此外,我们的模拟证明了在外部施加的压力和应力弛豫的联合影响下,分层的准同型相界(MPB)纳米结构的发展,其特征是突然出现的由中心阳离子双<111>位移引发的锯齿状单斜排列。这些发现对于在薄膜结构中定制MPBs以及光诱导畴壁的动力学有重要意义。最后,通过逐渐施加剪切应变,我们也发现了探索晶格无序的研究途径。  
Editorial Summary  

Ferroelectricity in perovskite materials: Dynamics of lattice disorder

With the advent of advanced material characterization methods and computational simulations, evidence has become increasingly available in that complex material systems exhibit local perturbations of their average crystal structure, or short-range lattice disorder, which modifies their functional response. While the average crystal structure is then satisfactory revealed through well-stablished experimental techniques, the underlying lattice disorder is likely to remain unnoted and may be exposed only on the basis of theoretical analyses and computations. As an example, a distinctive feature in the phase transitions of perovskites ATiO3 involves the emission of soft phonon modes. Although these phonon modes have been associated with the onset of disordered phases, this interpretation is still uncertain since, to the present, the soft modes have been correlated only with the bond softening phenomenon that occurs along specific directions. Effective Hamiltonian and molecular dynamics (MD) approaches have provided a theoretical foundation to the hopping processes of the central cations and to the associated ferroelectric properties at the transition to the higher temperature cubic phase, further showcasing the possibly mixed order-disorder character of this transition. In this work, Jan O?en ?ek et al. from the University of West Bohemia in Pilsen, Czech Republic, utilized large-scale molecular dynamics (MD) and density functional theory (DFT) simulations, investigated the pervasive dynamical nature of the lattice disorder in classic ferroelectricity at different length scales. The work demonstrated that the lattice disorder is ubiquitous to the breakdown of all perovskite phases into an ensemble of dynamically distorted, minimum energy rhombohedral configurations or motifs, produced by the excursions of the central cations within the non-stationary A and O cages of the perovskite. These atomic excursions, or tunneling effects, lie at the origin of the scattered soft phonon modes observed across the phase transitions in all disordered perovskite phases, unequivocally indicating the onset of lattice disorder according to the dynamical analyses of the finite-temperature phonon dispersion curves. Th work also showed that the long-range coupling of polarization produces ultrafast, dynamically evolving nanocluster morphologies in the disordered orthorhombic, tetragonal and cubic phases, which serve as the effective carriers of electric polarization across the material. This research offers comprehensive views into the interplay between lattice disorder, finite-temperature DW arrangements, and MPB transitions. The understanding is essential for elucidating the correlation between the structural complexities arising at different length scales and the emergence of ferroelectric responses.
钙钛矿材料的铁电性:晶格无序动力学            

随着先进材料表征方法和计算模拟的出现,越来越多的证据表明,复杂材料系统具有相对于其平均晶体结构的局部微扰,或者称为短程晶格无序,这会改变它们的功能响应。虽然通过成熟的实验技术可以得到平均晶体结构,但潜在的晶格失序可能只有通过理论分析和计算才能被揭示。作为一个典型的例子,钙钛矿ATiO3材料相变的一个显著特征是涉及到软声子模式的发射,虽然这些声子模式与无序结构的出现相关,但解释仍不确定,因为到目前为止,软模式只与发生在特定方向的键软化现象相关。在该背景下,有效的哈密顿量和分子动力学(MD)方法为钙钛矿相变研究提供了理论基础,进一步展示了这种转变可能的混合有序无序特征。在本工作中,来自捷克皮尔森西波西米亚大学的Jan O?en ?ek等人,利用大规模MD和密度泛函理论(DFT)模拟计算,研究了在不同长度尺度下经典铁电材料系统中的晶格无序动力学性质。研究证明,晶格无序普遍存在,这导致所有钙钛矿相分解为一组动态扭曲的、能量最低的三斜晶构型或基元,这是钙钛矿中心阳离子在非定态的A和O笼子内移动产生的。根据作者对有限温度下声子色散曲线的动态分析,这些原子的偏离,或者称为隧道效应,是所有无序钙钛矿相变过程中观察到的散射软声子模式的根本原因。研究还发现,极化的长程耦合在无序正交、四方和立方相中产生超快、动态演化的纳米团簇形态,这些形态充当了电极化在材料中的有效载流子。该研究为晶格无序、有限温度畴壁排列和准同型相界跃迁之间的相互作用提供了全面的观点,这对阐明在不同长度尺度上产生结构复杂性与铁电响应出现之间的相关性至关重要。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050