首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Grain boundary effects in high-temperature liquid-metal dealloying: a multi-phase field study
发布时间:2023-11-08

Grain boundary effects in high-temperature liquid-metal dealloying: a multi-phase field study

   Nathan Bieberdorf, Mark Asta & Laurent Capolungo        
 

    npj Computational Materials 9: 127 (2023)
    doi.org/10.1038/s41524-023-01076-7
    Published online: 21 July 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: A multi-phase field model is employed to study the microstructural evolution of an alloy undergoing liquid dealloying, specifically considering the role of grain boundaries. A semi-implicit time-stepping algorithm using spectral methods is implemented, which enables simulating large 2D and 3D domains over long time scales while still maintaining a realistic interfacial thickness. Simulations reveal a mechanism of coupled grain–boundary migration to maintain equilibrium contact angles with the topologically complex solid–liquid interface, which locally accelerates diffusion-coupled growth of a liquid channel into the precursor. This mechanism asymmetrically disrupts the ligament connectivity of the dealloyed structure in qualitative agreement with published experimental observations. The grain boundary migration-assisted corrosion channels form even for precursors with small amounts of the dissolving alloy species, below the parting limit. The activation of this grain boundary dealloying mechanism depends strongly on grain boundary mobility.
摘要: 我们采用多相场模型研究了合金在液态去合金化过程中的微观结构演化,并特别考虑了晶界的作用。我们使用谱方法实现了一种半隐式时间步进算法,能够在长时间模拟大规模二维、三维区域的同时,仍然保持真实的界面厚度。模拟结果揭示了一种耦合晶界迁移机制,该机制能够维持拓扑结构复杂固液界面的平衡接触角,局部加速液体通道进入前驱体的扩散耦合生长。该机制以不对称的方式破坏去合金化结构的韧带连接,这与已发表的实验观测结果定性一致。即使对于仅含少量(低于分离极限)可溶合金组分的前驱体,在晶界迁移协助的作用下也能形成腐蚀通道。这种晶界去合金化机制的活性强烈依赖于晶界迁移率。
Editorial Summary

Grain boundary effects in high-temperature liquid-metal dealloying: a multi-phase field study

Dealloying of multicomponent metals is known to generate highly topologically complex structures with micron- or nano-scale ligaments and voids. Some examples of porous metals synthesis via dealloying include aqueous solution dealloying (e.g. Ag dealloying from AuAg in acid), liquid metal dealloying (e.g. Ti dealloying from TaTi in liquid Cu), and, more recently, molten salt dealloying (e.g. Cr dealloying from NiCr in molten salt). Dealloyed nanoporous metals have been shown to possess remarkable catalytic properties, large capacitance, and high mechanical strength when compared to their bulk counterparts. However, these desirable properties can be deleteriously affected by the presence of grain boundaries in the metal, which are known to affect the ligament size and connectivity of these dealloyed structures. Although the microstructure of the solid alloy precursor is expected to play an important role in this dealloying, the detailed mechanisms underlying how features such as grain boundaries may alter this process are less understood. It is critical to understand these mechanisms of grain boundary dealloying corrosion to optimize nanoporous materials synthesis. In this work, Nathan Bieberdorf et al. from the Department of Materials Science and Engineering, University of California, Berkeley, employed a multi-phase field model to study the microstructural evolution of an alloy undergoing liquid dealloying, specifically considering the role of grain boundaries. A semi-implicit time-stepping algorithm using spectral methods was implemented, which enables simulating large 2D and 3D domains over long time scales while still maintaining a realistic interfacial thickness. Simulations revealed a mechanism of coupled grain–boundary migration to maintain equilibrium contact angles with the topologically complex solid–liquid interface, which locally accelerates diffusion-coupled growth of a liquid channel into the precursor. This mechanism asymmetrically disrupts the ligament connectivity of the dealloyed structure in qualitative agreement with published experimental observations. The grain boundary migration-assisted corrosion channels form even for precursors with small amounts of the dissolving alloy species, below the parting limit. The activation of this grain boundary dealloying mechanism depends strongly on grain boundary mobility. The multi-phase field model proposed in this work could be applied towards a wide range of topologically complex evolving nano-scale structures.
高温液态金属去合金化中的晶界效应:多相场研究

多组分金属去合金化能够产生微米级或纳米级韧带、空洞等高度复杂的拓扑结构。去合金化合成多孔金属的实例包括水溶液去合金(例如酸中去除AuAg中的Ag)、液态金属去合金(例如液态金属Cu中去除TaTi中的Ti)、以及最近兴起的熔融盐去合金(例如熔融盐中去除NiCr中的Cr)。与体相相比,去合金化后的纳米多孔金属具有优异的催化性能、大电容以及高机械强度。然而,金属中晶界的存在会影响去合金结构中韧带的尺寸和连接,从而可能对这些优越的性能造成有害的影响。虽然固态合金前驱体的微观结构被认为在去合金过程中发挥重要作用,但对于晶界等特征将如何改变这一过程的详细机理尚不清楚。理解晶界去合金腐蚀机理对于优化纳米多孔材料的合成至关重要。在本工种,来自加州大学伯克利分校材料科学与工程系的Nathan Bieberdorf等人,采用多相场模型,研究了合金在液态去合金化过程中的微观结构演化,并特别考虑了晶界的作用。他们使用谱方法实现了一种半隐式时间步进算法,能够在长时间模拟大规模二维、三维区域的同时,仍然保持真实的界面厚度。模拟结果揭示了一种耦合晶界迁移机制,该机制能够维持拓扑结构复杂的固液界面的平衡接触角,局部加速液体通道进入前驱体的扩散耦合生长。该机制以不对称的方式破坏去合金化结构的韧带连接,这与已发表的实验观测结果定性一致。即使对于仅含少量(低于分离极限)可溶合金组分的前驱体,在晶界迁移协助的作用下也能形成腐蚀通道。这种晶界去合金化机制的活性强烈依赖于晶界迁移率。本工作提出的多相场模型能够广泛应用于拓扑结构复杂的纳米尺度结构演化。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050