首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Spin-phonon decoherence in solid-state paramagnetic defects from first principles
发布时间:2023-11-08

Spin-phonon decoherence in solid-state paramagnetic defects from first principles

   Sourav Mondal & Alessandro Lunghi         
 

    npj Computational Materials 9: 120 (2023)
    doi.org/10.1038/s41524-023-01082-9
    Published online: 11 July 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Paramagnetic defects in diamond and hexagonal boron nitride possess a combination of spin and optical properties that make them prototypical solid-state qubits. Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available. Here we apply ab initio spin dynamics simulations to this problem and quantitatively reproduce the experimental temperature dependence of spin relaxation time and spin coherence time. We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence, and point to the nature of vibrations in 2-dimensional materials as the culprit for their shorter coherence time. These results provide an interpretation to spin-phonon decoherence in solid-state paramagnetic defects, offer a strategy to correctly interpret experimental results, and pave the way for the accelerated design of spin qubits.
摘要: 金刚石和六方氮化硼中的顺磁缺陷兼具自旋和光学特性,使其成为典型的固态量子比特。这些自旋量子比特的相干性严重受自旋-声子弛豫的限制,但人们对这一过程还缺乏充分的理解。在本文中,我们应用从头算自旋动力学模拟来解决这个问题,并定量再现了自旋弛豫时间和自旋相干时间对实验温度的依赖关系。我们证明,零场分裂的低频双声子调制导致自旋弛豫和退相干,并指出,二维材料中的振动性质是其较短相干时间的主要原因。这些结果为固态顺磁缺陷中的自旋-声子退相干提供了一种解释,为正确解释实验结果提供了一种策略,并为加速设计自旋量子比特铺平了道路。
Editorial Summary

Spin-phonon decoherence in solid-state paramagnetic defects

Defects in solid-state semiconductors often introduce additional electronic states with energy lower than the band-gap, leading to color centers. Tens of different color centers are known for only diamond and silicon carbide, and their presence often enriches the original material’s optical and magnetic properties, enabling interesting applications in the fields of sensing, photonics, and more. In particular, the negative nitrogen-vacancy (NV?) center in diamond and negative boron vacancies in hexagonal boron-nitride (VB?), possess a combination of spin and optical properties that make them prototypical solid-state qubits. Spin coherence is key for any quantum application and ultimately sets the limit of sensing accuracy or computation fidelity. Despite its central role in the physics of paramagnetic defects, the contribution of spin-phonon interaction to relaxation and decoherence has not yet been fully understood and experiments are invariably interpreted by means of phenomenological models based on a simplistic Debye picture of phonons. Such a state of affairs effectively prevents the establishment of a rigorous understanding of spin dynamics in solid-state qubits and several outstanding questions are left unanswered. In this work, Sourav Mondal et al from the School of Physics, Trinity College in Ireland, applied ab initio spin dynamics simulations to address this problem and quantitatively reproduced the experimental temperature dependence of spin relaxation time and spin coherence time. They demonstrated that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence, and pointed to the nature of vibrations in two-dimensional (2D) materials as the culprit for their shorter coherence time. Moreover, 2D material hetero-structures and tailored surface coating might also offer a rich playground to tune the vibrational properties of spin qubits’ host environment. Although alternative relaxation pathways might be operative in spin qubits with different spin multiplicities or low-lying excited electronic states, these results are likely exportable to all spin qubits exhibiting zero-field splitting. This work provides an interpretation to spin-phonon decoherence in solid-state paramagnetic defects, offers a strategy to correctly interpret experimental results, and paves the way for the accelerated design of spin qubits.
固态顺磁缺陷中的自旋声子退相干

固态半导体中的缺陷通常会引入能量低于带隙的额外电子态,从而导致色心。仅在金刚石和碳化硅中就发现了数十种不同的色心。色心的存在丰富了原始材料的光学和磁学特性,使其在传感、光子学等领域有着有趣趣的应用。特别地,金刚石中的NV?色心和六方氮化硼中的VB?色心兼具自旋和光学特性,使其成为典型的固态量子比特。自旋相干性是任何量子应用的关键,并最终决定传感精度或计算保真度的极限。尽管自旋-声子相互作用在顺磁缺陷物理学中起着核心作用,但它对弛豫和退相干的贡献尚未被完全理解。实验上总是通过基于简化的声子Debye图的唯象模型来解释,这阻碍了对固态量子比特中自旋动力学的严格理解,一些悬而未决的问题尚未得到解答。在本工作中,来自爱尔兰都柏林圣三一大学物理学院的Sourav Mondal等人,利用从头算自旋动力学模拟来解决这个问题,并定量再现了自旋弛豫时间和自旋相干时间对实验温度的依赖关系。作者证明,零场分裂的低频双声子调制导致自旋弛豫和退相干,且二维材料中的振动性质是其较短相干时间的主要原因。此外,二维材料的异质结构和定制的表面涂层也可能为调整自旋量子比特宿主环境的振动特性提供丰富的平台。尽管在具有不同自旋多重度或者低能激发电子态的自旋量子比特中可能存在其他弛豫途径,该论文的模拟结果仍适用于显示出零场分裂的所有自旋量子比特。本工作为固态顺磁缺陷中的自旋-声子退相干提供了一种解释,为正确解释实验结果提供了一种策略,并为加速设计自旋量子比特铺平了道路。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050