首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Thermo-electro-mechanical microstructural interdependences in conductive thermoplastics
发布时间:2023-11-08

Thermo-electro-mechanical microstructural interdependences in conductive thermoplastics

   Javier Crespo-Miguel, Sergio Lucarini, Angel Arias & Daniel Garcia-Gonzalez        
 

    npj Computational Materials 9: 134 (2023)
    doi.org/10.1038/s41524-023-01091-8
    Published online: 31 July 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract:  Additive manufacturing has enabled the design of thermoplastic components that provide structural support, electrical conductivity and heat generation modulated by mechanical deformation. The mechanisms and interplays that govern the material response at the microstructural level remain, however, elusive. Here, we develop an experimental method to characterise conductive filaments from a combined mechanical, electrical and thermal perspective. This approach is used to unravel exciting material interplays of conductive polylactic acid. To overcome experimental limitations that prevent a complete microstructural analysis of the problem, we develop a full-field homogenisation framework and implement it for finite elements. The framework accounts for viscoplasticity, electrical and thermal conduction, convection and heat generation via Joule effect, as well as for the interdependences between them. After experimental validation, the framework is applied to virtually optimise fabrication requirements to obtain desired properties in final products, i.e., stiffer products, filaments with higher conductivities or with better sensing capabilities.
摘要: 增材制造使热塑性部件的设计成为可能,提供了结构支持、导电性和由机械变形调节的热量产生。然而,在微观结构水平上,控制材料响应的机制和相互作用仍然难以捉摸。在这里,我们开发了一种实验方法,从机械、电和热的角度来表征导电丝。该方法被用于揭示导电聚乳酸丝的激发材料相互作用。为了克服阻碍对完整微观结构进行分析的实验限制,我们开发了一套全场均质化框架,并将其用于有限元。该框架考虑了粘塑性、电塑性和热传导、对流和通过焦耳效应产生的热,以及它们之间的相互依赖关系。经过实验验证,该框架被应用于虚拟优化制造要求,以在最终产品中获得预期的性能,即更硬的产品、具有更高电导率或具有更好的传感能力的细丝。
Editorial Summary

Thermo-electro-mechanical properties of conductive thermoplastics: A full-field homogenization framework

Conductive polymer composites with the addition of conductive base particles, such as metal powders or carbon-based particles (such as carbon nanotubes, graphene, carbon black or carbon nanofibers), can change their insulating properties, allowing the flow of electric current. The behavior of conductive thermoplastics is extremely complex due to the numerous intrinsic multifunctional couplings such as thermal, electrical and mechanical interdependencies. The thermos-electro-mechanical response of a conductive device at the macroscopic level is dependent on the geometry and boundary conditions, including zones that exhibit stress or current concentrations, or zones with high/low exposure to convection. From a microscopic viewpoint, the material behavior is governed by the nature and distribution of the composite phases (e.g., polymeric matrix and conductive particles) as well as the formation and distribution of micro-voids. Therefore, in order to understand the response of 3D printed conductive devices, the thermos-electric-mechanical response of these composites must be studied at the microscopic level. The analysis of the conductive thermoplastic filament would isolate the behavior of the material by discarding the structural effects. So far, most research efforts have focused on the thermo-electro-mechanical response of printed samples, which adds strong structural effects due to the additive manufacturing process. Nevertheless, there is no work addressing the thermal, electrical and mechanical responses of conductive filaments in a coupled fashion, taking into account the different interplays that occur between those physics. In this work, Javier Crespo-Miguel et al. from the Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, developed an experimental method to characterize conductive filaments from a combined mechanical, electrical and thermal perspective. To overcome experimental limitations that prevent a complete microstructural analysis of the problem, the authors developed a full-field homogenization framework that considers all interactions observed in conductive thermoplastics, such as viscoplasticity, electrical, thermal conduction, convection and heat generation via Joule effect, as well as for the interdependences between them. The framework captures the macroscopic responses observed in the experiment by considering the periodic Representative Volume Element of the microstructure. After experimental validation, the framework was proved as a valuable tool that can be applied to optimize fabrication requirements to obtain the desired properties in the final product, i.e., stiffer products, filaments with higher thermal conductivity or better sensing capabilities.
电热塑性塑料的热-电-机械特性:全场均质化框架

导电聚合物复合材料在加入导电基颗粒后,如金属粉末或碳基颗粒(如碳纳米管、石墨烯、碳黑或碳纳米纤维),可以改变了其绝缘特性,允许电流流动。由于存在许多内在的多功能耦合,如热、电和机械的相互依赖关系,导电性热塑性塑料的行为是极其复杂的。导电装置在宏观水平上的热电响应取决于几何形状和边界条件,包括表现出应力或电流浓度的区域,或高/低对流暴露的区域。从微观的角度来看,材料的行为由复合相(如聚合物基体和导电粒子)的性质和分布以及微空洞的形成和分布所决定的。因此,为了解三维打印导电器件的响应,必须在微观水平上研究这些复合材料的热电响应。在增材制造过程中,大多数研究工作都集中在印刷样品的热-电-机械响应上,增加了强烈的结构效应。迄今,还没有研究以耦合方式处理导电丝的热、电、机械响应,以及这些物理之间发生的相互作用。在本工作中,来自西班牙马德里卡洛斯三世大学连续介质力学与结构分析系的Javier Crespo-Miguel等人,开发了一种实验方法,从机械、电和热的角度来表征导电丝。为了克服阻碍对完整微观结构进行分析的实验限制,作者提出了一个全场均质化框架,考虑了在导电热塑性塑料中观察到的所有相互作用,如粘塑性、电导和热传导、对流和通过焦耳效应产生的热量,以及它们之间的相互依赖性。该框架通过考虑微观结构的周期代表性体积元,捕获了实验中观察到的宏观响应。经过实验验证,该框架被应用于虚拟优化制造要求,以在最终产品中获得预期的性能,即更硬的产品、具有更高电导率或具有更好的传感能力的细丝。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050