首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Using orbital sensitivity analysis to pinpoint the role of orbital interactions in thermoelectric power factor
发布时间:2023-11-14

Using orbital sensitivity analysis to pinpoint the role of orbital interactions in thermoelectric power factor

Wenhao Zhang, Jean-Fran?ois Halet and Takao Mori         
  

  
    npj Computational Materials 9: 137(2023)
    doi.org/10.1038/s41524-023-01103-7   
    Published online: 07 August 2023  
   Abstract| Full Text | PDF OPEN  
      
    
Abstract:The modification of the electronic band structure is of critical importance for thermoelectric materials whose heat to electricity power generation is related to carrier effective mass and alignment of semiconductor band edges. One approach to optimize the electronic band structure is by modification of orbital interactions through doping or alloying. While the current ab-initio quantum chemical calculations can help us to investigate orbital components of electronic bands, they reveal little information on the relative tunability of electronic states and transport properties with respect to orbital interactions. In this work, we present a method, based on a symmetry-adapted tight-binding model and sensitivity analysis, that can pinpoint the role of orbital interactions in determining electronic band structure and transport properties. As an application, a systematic theoretical analysis is used to show how the power factor of PbTe can/cannot be improved by playing with interatomic orbital interactions. The orbital interaction sensitivity analysis introduced in this work can easily be applied to other compounds or properties.  
摘要: 热电能量转换效率与载流子有效质量和半导体能带边缘的排列相关,因此电子能带结构的调控对热电材料至关重要。一种优化电子能带结构的方法是通过掺杂或合金化来改变轨道相互作用。尽管当前的从头算量子化学计算可以帮助我们研究电子能带的轨道成分,但它们对于轨道相互作用的电子态与输运性质间关系和可调性只能提供十分有限的信息。本工作,我们提出了一种基于对称自适应紧束缚模型和敏感性分析的方法,可以确定轨道相互作用对于电子能带结构和输运性质的影响。以PbTe为范例,我们通过系统的理论分析展示了如何通过调控原子间的轨道相互作用来改善/不能改善PbTe的功率因子。本工作引入的轨道相互作用敏感性分析方法可容易应用于其他化合物或性质。  
Editorial Summary  

Orbital Sensitivity Analysis: A New Powerful Tool for Optimizing Thermoelectric Performance

The electronic band structure of materials plays a decisive role in their thermoelectric performance. The long-standing focus in this field has been on engineering the band structure to control the power factor and thermoelectric figure of merit of thermoelectric materials. Common methods for band structure engineering include introducing multiple valley degeneracy, creating anisotropic complex Fermi surfaces, and adjusting mobility. These methods have significantly enhanced the thermoelectric performance of materials, underscoring the effectiveness of band structure engineering in the design and optimization of thermoelectric materials. However, for materials with specific structures or compositions, determining and achieving the corresponding optimal band structure for optimized thermoelectric performance is not a straightforward task and often requires extensive trial-and-error experiments or calculations. In theory, first-principles calculations can provide insight into the relationship between band structures and atomic orbitals and their interactions, thereby elucidating the ways to engineer band structures. However, due to the multitude of parameters involved and their interdependencies, it is challenging to directly establish the relationship between specific orbital effects and thermoelectric performance through calculations alone. Recently, a team from the National Institute for Materials Science and Tsukuba University in Japan proposed a method called orbital sensitivity analysis to elucidate the relationship between orbital interactions and band structures, thereby achieving thermoelectric performance optimization. This proposal is primarily based on the tight-binding model of band structures. For a specific material, its band structure can be described by a series of highly complex orbitals and their interaction parameters. Typically, these parameters are numerous and correlated with each other. The researchers first developed a symmetry-adapted independent parameter search model, which can automatically identify a few parameters that can be independently controlled for a specific material. They then constructed the relationship between these parameters and critical band features and thermoelectric transport properties through sensitivity analysis. Taking the typical thermoelectric system PbTe as an example, the researchers validated the effectiveness of this method. The results showed that the transport properties of PbTe are primarily determined by only a few orbital parameters. By manipulating certain orbital parameters, such as the orbital interaction between Te px and Te py, it is possible to achieve the approximate degeneracy in the valence band orbitals, thereby tripling the system's power factor at high temperatures. At low temperatures, adjusting the parameters to favor the light band at the band edge is beneficial for enhancing the power factor. These theoretical findings provide directions for experimental control, such as stress application direction and doping manners. The method proposed in this study can comprehensively establish the relationship between material orbital interactions and transport properties, and can also be easily extended to other systems. Therefore, it holds the potential to become a powerful tool for optimizing the performance of thermoelectric materials.                       
轨道敏感性分析:热电性能优化的新利器            

材料的电子能带结构在决定其热电性能方面扮演着关键角色。通过能带结构工程调控热电材料的功率因子及热电优值长期以来是该领域主要的研究方向之一。常用的能带调控的手段包括引入多能谷简并、各向异性复杂费米面和迁移率调控等。基于这些方法显著提升了材料的热电性能,证明了能带结构调控对于设计和优化热电材料的有效性。然而,对于具有特定结构或组分的材料,如何明确并实现对应最优热电性能的能带结构不是一件容易的事情,需要大量的试错实验或计算。理论上,基于第一性原理计算可以获得能带与原子轨道及其相互作用的关系,从而明确能带调控方式。但由于第一性原理计算本身不是参数化的计算且自洽过程复杂,因此难以直接明确某一种或几种轨道作用与热电性能之间的关系。近期,来自日本国立材料研究所和筑波大学团队提出轨道敏感度分析的手段用以明确轨道间相互作用与能带结构间的关系,由此实现热电性能优化。该方法主要基于能带的紧束缚(tight-binding)模型开展。对于某一特定材料,其能带结构可由一系列十分复杂的轨道及其相互作用参数描述。通常这些参数数量众多且相互关联。研究者首先开发了一种对称性适应的独立参数寻找模型,该模型可针对具体材料自动化的确定众多模型参数中可以独立调控的几个,进而通过敏感性分析构建这些参数与能带关键特征以及热电输运性能之间的关联。以典型热电体系PbTe为例,研究者验证了该方法的有效性。结果表明,PbTe的输运性能主要由很少的几个轨道参数决定。通过对某些轨道参数如Te px-Te py间轨道作用的调控,可以实现价带轨道的近多重简并,从而将体系高温的功率因子提升三倍。而在低温时,调控参数使得轻带成为带边则有利于提升功率因子。这些理论结果可为实验调控,如施加应力方向、掺杂固溶方式等提供了方向。本研究所提出的方法可以全面透彻的构建材料轨道作用与输运性能关系,同时可较为容易的推广至其他体系,因此其有望成为热电材料性能优化的利器。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050