首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Design of refractory multi-principal-element alloys for high-temperature applications
发布时间:2023-11-14

Design of refractory multi-principal-element alloys for high-temperature applications

Gaoyuan Ouyang, Prashant Singh, Ranran Su, Duane D. Johnson, Matthew J. Kramer, John H. Perepezko, Oleg N. Senkov, Daniel Miracle & Jun Cui        
  

  
    npj Computational Materials 9: 141(2023)
    doi.org/10.1038/s41524-023-01095-4   
    Published online: 10 August 2023  
   Abstract| Full Text | PDF OPEN  
     
Abstract:Refractory multi-principal-element alloys (RMPEAs) exhibit high specific strength at elevated temperatures (T). However, current RMPEAs lack a balance of room-temperature (RT) ductility, high-T strength, and high-T creep resistance. Using density-functional theory methods, we scanned composition space using four criteria: (1) formation energies for operational stability: ?150≤Ef≤?+70?meV per atom; (2) higher strength found via interstitial electron density with Young’s moduli E?>?250?GPa; (3) inverse Pugh ratio for ductility: G/B?<?0.57; and (4) high melting points: Tm?>?2500? C. Using rapid bulk alloy synthesis and characterization, we validated theory and down-selected promising alloy compositions and discovered Mo72.3W12.8Ta10.0Ti2.5Zr2.5 having well-balanced RT and high-T mechanical properties. This alloy has comparable high-T compressive strength to well-known MoNbTaW but is more ductile and more creep resistant. It is also superior to a commercial Mo-based refractory alloy and a nickel-based superalloy (Haynes-282) with improved high-T tensile strength and creep resistance.  
摘要: 耐火多主元素合金 (RMPEAs) 在高温 (T) 下表现出较高的比强度。然而,目前的RMPEAs缺乏室温 (RT) 延展性、高T强度和高T抗蠕变阻力方面的平衡。采用密度泛函理论方法,我们根据四个标准对组成空间进行扫描:(1) 操作稳定性的生成能:?150≤Ef≤+70meV/原子;(2)通过间隙电子密度发现更高的强度,杨氏模量E > 250 GPa;(3) 延性逆普比:G/B < 0.57;(4) 熔点高:Tm > 2500 C。利用快速块材合金合成和表征,我们验证了理论,并向下选择了有前景的合金成分,发现Mo72.3W12.8Ta10.0Ti2.5Zr2.5具有良好的平衡RT和高T力学性能。这种合金具有与众所周知的MoNbTaW相当的高T抗压强度,但更具延展性和抗蠕变性能。它还优于商用钼基耐火合金和镍基高温合金 (Haynes-282),具有更好的高T抗拉强度和抗蠕变性。  
Editorial Summary  

High-temperature refractory multi-element alloys: High-throughput screening

Refractory multi-principal-element alloys (RMPEA) are promising alloys for high-temperature (HT) applications if stability, strength, and oxidation resistance in harsh-service conditions can be addressed. The first two HT-strength RMPEAs, MoNbTaW and MoNbTaVW, are equiatomic solid-solutions that have strong mechanical strength at high temperatures, but they are brittle at room temperature. Efforts were made to improve their ductility, but always resulted in a significant loss of HT strength. Fortunately, numerous non-equiatomic RMPEAs do indeed retain single-phase solid solutions (and multiphase for strengthening, controlled by composition) that exhibit superior mechanical properties. By removing the equiatomic constraint, the MPEA composition space expands significantly yet demands an excessive amount of computational and experimental work. The high-throughput (HTP) scheme is one such approach which, when combined with numerically efficient density-functional theory (DFT) methods, can enable accurate MPEA design. Experimentally, methods like rapid alloy prototyping, diffusion-multiples, additive manufacturing, and thin-film-related co-deposition have been successful. Recently, computation materials science has started to play a critical role in HEA development, including high-throughput computational method, machine learning assisted design coupled with modeling/experimental data, and DFT. However, past effort focused on either computation or experiments with a limited synergy of the two. Moreover, there has been limited or no focus on developing numerically efficient ways to directly use DFT in MPEA design. In this work, Gaoyuan Ouyang et al. from the Division of Materials Science and Engineering, Ames Laboratory, developed a numerically efficient screening strategy combining HTP-DFT with experimental validation along with high-fidelity testing for efficiently exploring the vast RMPEA compositional space. In the study, DFT was used to scan composition space using four criteria: (1) formation energy for operational stability: ?150 ≤ Ef ≤ +70meV/atom; (2) higher strength found via interstitial electron density with Young’s moduli E?>?250?GPa; (3) inverse Pugh ratio for ductility: G/B?<?0.57; (4) high melting points: Tm?>?2500? C. Using rapid bulk alloy synthesis and characterization, the authors found that Mo72.3W12.8Ta10.0Ti2.5Zr2.5 has a good balance of room-temperature and HT mechanical properties. This alloy has comparable high-T compressive strength to well-known MoNbTaW but is more ductile and more creep resistant. It is also superior to a commercial Mo-based refractory alloy and a nickel-based superalloy (Haynes-282) with improved high-T tensile strength and creep resistance.
高温耐火多主元素合金:高通量扫描            

如果耐火多主元素合金 (RMPEAs)在恶劣条件下的稳定性、强度和抗氧化性的问题得到解决,它们将是高温应用很有前途的合金材料。理想条件下,RMPEA是具有极高熔点的单相体系,通过固溶强化具有超过1000 的高比强度。最早的两种高温强度RMPEAs,MoNbTaW 和 MoNbTaVW,是等原子固态液体,它们在高温下具有较强的机械强度,但同时它们在室温下具有脆性。人们在提高它们延展性的同时,总是会导致高温强度的显著消失。幸运的是,许多非等原子RMPEAs确实保留了单相固相溶液(以及多相增强,由成分控制),且表现出优越的力学性能。通过消除等原子约束,MPEA的组成空间将显著扩展,但研发需要大量的计算和实验。前期研究表明,高通量计算与密度泛函理论(DFT)方法相结合时,可以实现精确的MPEA设计。实验表明,快速合金成型、扩散倍数、增材制造和薄膜相关共沉积等方法已经取得了成功。最近,计算材料科学已经开始在高熵合金的发展中发挥关键作用,包括基于计算机的高通量计算方法、机器学习辅助设计结合建模/实验数据和DFT方法。然而,过去的努力主要集中在计算或实验上,但两者的协同作用有限。此外,在MPEA设计中直接使用DFT的数值高效方法还非常有限或没有关注。在本工作中,来自美国Ames实验室材料科学与工程系的Gaoyuan Ouyang等人,开发了一套数值高效的筛选策略,将高通量DFT与实验验证以及高保真测试相结合,以有效地探索巨大的RMPEA组成空间。该研究采用DFT方法,根据四个标准对组成空间进行扫描:(1) 操作稳定性的生成能:?150 ≤ Ef ≤ +70meV/原子;(2)通过间隙电子密度发现更高的强度,杨氏模量E > 250 GPa;(3) 延性逆普比:G/B < 0.57;(4) 熔点高:Tm > 2500 C。利用快速块材合金合成和表征,本工作发现Mo72.3W12.8Ta10.0Ti2.5Zr2.5具有良好的平衡室温和高温力学性能。这种合金具有与众所周知的MoNbTaW相当的高温抗压强度,但更具延展性和抗蠕变性能。它还优于商用钼基耐火合金和镍基高温合金(Haynes-282),具有更好的高温抗拉强度和抗蠕变性。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050