首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Rapid mapping of alloy surface phase diagrams via Bayesian evolutionary multitasking
发布时间:2023-11-14

Rapid mapping of alloy surface phase diagrams via Bayesian evolutionary multitasking

   Shuang Han, Steen Lysgaard, Tejs Vegge & Heine Anton Hansen      
 

    npj Computational Materials 9: 139 (2023)
    doi.org/10.1038/s41524-023-01087-4
    Published online: 10 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Surface phase diagrams (SPDs) are essential for understanding the dependence of surface chemistry on reaction condition. For multi-component systems such as metal alloys, the derivation of such diagrams often relies on separate first-principles global optimization tasks under different reaction conditions. Here we show that this can be significantly accelerated by leveraging the fact that all tasks essentially share a unified configurational search space, and only a single expensive electronic structure calculation is required to evaluate the stabilities of a surface structure under all considered reaction conditions. As a general solution, we propose a Bayesian evolutionary multitasking (BEM) framework combining Bayesian statistics with evolutionary multitasking, which allows efficient mapping of SPDs even for very complex surface systems. As proofs of concept, we showcase the performance of our methods in deriving the alloy SPDs for two heterogeneous catalytic systems: the electrochemical oxygen reduction reaction (ORR) and the gas phase steam methane reforming (SMR) reaction.
摘要:  表面相图(SPDs)对理解表面化学对反应条件的依赖性是至关重要的。对于金属合金等多组分体系,这类图的推导通常依赖于不同反应条件下分开的第一性原理全局优化任务。在这里,我们发现??,所有任务基本上共享一个统一的构型搜索空间,利用这个事实可以显著加速推导速度,并且只需要一个昂贵的电子结构计算来评估在所有反应条件下表面结构的稳定性。作为通用的解决方案,我们提出了一个将贝叶斯统计与进化多任务处理相结合的贝叶斯进化多任务处理(BEM)框架,该框架对非常复杂的表面系统也可以有效映射SPD。作为该概念的证明,我们展示了该方法在推导两种多相催化体系合金SPD方面的性能:电化学氧还原反应(ORR)和气相蒸汽甲烷重整(SMR)反应。
Editorial Summary

Rapid mapping of alloy surface phase diagrams:Bayesian evolutionary multitasking

Surface phase diagrams (SPDs) are essential for understanding the dependence of surface chemistry on reaction condition, and their construction is central for revealing the relationship between the most stable thermodynamic states of the catalyst surface and the state variables. In reactive environments, the configuration with the lowest surface free energy represents the most thermodynamically favorable state in a reaction system. From this, the surface structure of all reaction intermediates can be inferred based on the surface free energy. Traditional methods rely on chemical intuition and brute-force search to determine the most favorable surface configuration. Due to the large number of degrees of freedom that need to be considered to describe the reality and complexity of the system, the size of the phase space that can be explored by these methods is very limited, making it difficult to map high-quality surface phase images. Recently, evolutionary algorithms (EA) have emerged as an alternative solution for finding the most stable adsorbate alloy structures. As a stochastic optimization method, EA is not constrained to the sample space according to a distribution and is very suitable for determining the lowest energy configuration. However, it is difficult for EA to achieve accurate predictions for very complex adsorbed alloy systems. In addition, most EA studies are combined with expensive but accurate density functional theory calculations. When the search space is too large, prediction becomes very time-consuming. In this work, a group led by Prof. Heine Anton Hansen from the Department of Energy Conversion and Storage, Technical University of Denmark, proposed a Bayesian evolutionary multitasking (BEM) framework as a new strategy to find the most stable adsorbate alloy configuration under various reaction conditions. In this framework, evolutionary multitasking (EM) solves multi-factor optimization problems by executing multiple EA tasks in a single population. EA is implemented through Bayesian inference, which uses a Gaussian process model that can effectively obtain the average prediction and uncertainty of the relaxation energy of each surface structure. This framework can resolve the complexities of alloys, adsorption and reaction conditions, resulting in alloy SPD with good efficiency and accuracy. The authors used this framework to study electrochemical oxygen reduction reactions on Pd-doped Ag catalysts and steam methane reforming on Pt-doped Ni nanocatalysts, and successfully revealed the surface phase diagrams of the catalysts under different reaction conditions correctly. They accurately predicted the impact of reaction conditions and provided a rapid and general solution for surface phase diagram mapping.
合金表面相图快速绘制:贝叶斯多任务进化算法

表面相图 (SPDs) 对理解表面化学对反应条件的依赖性是至关重要的,它的构建是揭示催化剂表面最稳定热力学状态与状态变量之间关系的核心。在反应性环境中,具有最低表面自由能的构型代表了一个反应体系中热力学上最有利的状态,由此可以根据表面自由能来推断所有反应中间体的表面结构。传统方法依赖于化学直觉和蛮力搜索来确定最有利的表面构型,但由于对系统的现实和复杂性的描述需要考虑大量的自由度,这些方法可以探索的相空间大小十分有限,从而难以绘制足够高质量的表面相图。最近,进化算法(EA)被提出作为寻找最稳定吸附质合金结构的替代解决方案。作为一种随机优化方法,EA不受样本空间分布地约束,非常适合于确定最低能量构型。然而,EA难以对非常复杂的吸附合金体系实现准确的预测,同时大多数EA研究都结合了昂贵但精确的密度泛函理论计算,当搜索空间太大时预测会变得非常耗时。在本工作中,来自丹麦科技大学能源转换与存储系的Heine Anton Hansen教授团队,提出了一套贝叶斯进化多任务处理(BEM)框架,可作为一种新的策略来寻找各种反应条件下最稳定的吸附质合金构型。在该框架中,进化多任务处理(EM)通过在单个群体中执行多个EA任务来解决多因素优化问题。而EA则通过贝叶斯推理实施,它使用高斯过程模型,可以有效地获得每个表面结构松弛能量的平均预测和不确定性。该框架能够解决合金吸附和反应条件复杂性等问题,从而获得良好的效率和准确的合金SPD。作者利用该框架,研究了钯掺杂的银催化剂上的电化学氧还原反应和铂掺杂镍纳米催化剂上的蒸汽甲烷重整,并成功地揭示了不同反应条件下催化剂的表面相图。他们预测了反应条件带来的影响,为表面相图地绘制提供了一个快速的、通用的解决方案。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050