首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Searching for ductile superconducting Heusler X2YZ compounds
发布时间:2023-11-14

Searching for ductile superconducting Heusler X2YZ compounds

   Noah Hoffmann, Tiago F. T. Cerqueira, Pedro Borlido, Antonio Sanna, Jonathan Schmidt & Miguel A. L. Marques      
 

    npj Computational Materials 9: 138 (2023)
    doi.org/10.1038/s41524-023-01084-7
    Published online: 09 August 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract: Heusler compounds attract a great deal of attention from researchers thanks to a wealth of interesting properties, among which is superconductivity. Here we perform an extensive study of the superconducting and elastic properties of the cubic (full-)Heusler family using a mixture of ab initio methods, as well as interpretable and predictive machine-learning models. By analyzing the statistical distributions of these properties and comparing them to anti-perovskites, we recognize universal behaviors that should be common to all conventional superconductors while others turn out to be specific to the material family. In total, we discover a total of eight hypothetical materials with critical temperatures above 10?K to be compared with the current record of Tc?=?4.7?K in this family. Furthermore, we expect most of these materials to be highly ductile, making them potential candidates for the manufacture of wires and tapes for superconducting magnets.
摘要:  赫斯勒(Heusler)化合物由于其有趣性质,特别是超导性,吸引了大量研究者的关注。在本文中,我们结合从头算方法以及可解释和可预测的机器学习模型,对立方(全)赫斯勒家族的超导和弹性性质进行了广泛研究。通过分析这些性质的统计分布,并将其与反钙钛矿进行比较,我们认识到一些普遍的行为应该能适用于所有的传统超导体,而其他的则特定于该材料家族。总体上,我们发现了八种假设的材料,其临界温度均超过10K,与此家族当前的Tc = 4.7K记录相当。此外,我们预期这些材料中的大部分都会具有很高的韧性,使它们成为制造超导磁体线材和带材的潜在候选材料。
Editorial Summary

Searching for ductile superconducting Heusler Compounds

The image of a superconductor (likely a YBaCuO ceramic) immersed in liquid nitrogen and levitating over an array of magnets is undoubtedly familiar to anyone who has ever witnessed a science demonstration. These ceramics still hold the record for the highest superconducting transition temperature (Tc) at ambient pressure (at around 133?K for HgBa2Ca2Cu3O1+x), but other materials with high-Tc have been found in the past decades, e.g., MgB2 (Tc?=?39?K), fullerides such as Cs3C60 (Tc?=?38?K), thin films of FeSe (Tc?>?100?K), etc. In spite of these remarkable advances, to this day, niobium-containing materials discovered in the 1950s and 1960s are still the go-to choice for commercial applications, e.g. niobium-titanium (Nb–Ti) alloys and Nb3Sn. Notably, this happens in spite of their maximum critical temperature of 9.8?K at 24 percent by weight of Ti, which pales in comparison with the previous examples, also lower than the Tc? (18.5K) of Nb3Sn. However, Nb–Ti has not been entirely replaced by Nb3Sn (nor by any other high-Tc superconductor) as the industry standard, since a critical aspect for superconductors from an engineering point-of-view is the ability to draw material into continuous wire or tape several kilometers long with consistent fabrication quality. Several requirements should be met in the search for new superconductors that can replace Nb–Ti alloys in commercial applications—ductility, lower density to accommodate easier transportation, higher critical field, and no Nb. In this work, Noah Hoffmann et al. from the Institut f r Physik, Martin-Luther-Universit?t Halle-Wittenberg, Germany, performed an extensive study of the superconducting and elastic properties of the cubic (full-)Heusler family using a mixture of ab initio methods, as well as interpretable and predictive machine-learning models. By analyzing the statistical distributions of these properties and comparing them to anti-perovskites, the authors recognized universal behaviors that should be common to all conventional superconductors, while others turn out to be specific to the material family. In total, the authors discovered a total of eight hypothetical materials with critical temperatures above 10?K to be compared with the current record of Tc?=?4.7?K in this family. Furthermore, the authors expected most of these materials to be highly ductile, making them potential candidates for the manufacture of wires and tapes for superconducting magnets. This work shows the potential of machine-learning models in the interpretation and exploration of the data for superconducting materials. 
探寻韧性超导Heusler化合物

任何见过超导材料科学演示的人都无疑熟悉一个场景:一块浸没在液氮中超导体(很可能是YBaCuO陶瓷)悬浮在一系列磁铁上方。这些陶瓷仍然保持着环境压力下最高的超导转变温度(Tc)的纪录(对于HgBa2Ca2Cu3O1+x,Tc约为133K)。在过去的几十年里,人们也发现了其他高Tc材料,例如MgB2 (Tc=39K),富勒烯如Cs3C60 (Tc=38K),FeSe的薄膜 (Tc > 100K)等。尽管人们取得了这些显著的进展,但直到今天,20世纪50年代和60年代发现的含铌材料仍然是商业应用的首选,比如铌-钛(Nb-Ti)合金、Nb3Sn等。值得注意的是,铌-钛合金的最高Tc只有9.8K(在钛的重量百分比为24%时),与前述的例子相比显得相形见绌,也低于Nb3Sn的Tc (18.5K),但铌-钛合金没有被Nb3Sn(或其他任何高温超导体)取代。这是因为,从工程的角度来看,对于超导体关键的方面是将材料拉成几公里长的连续线或带,并保持一致的制造质量能力。寻找能够取代Nb-Ti合金的新超导体时,需要满足韧性、低密度以适应更容易的运输、高临界场、不含Nb元素等条件。在本文中,来自德国马丁路德?哈勒维腾贝格大学物理研究所的Noah Hoffmann等人教授团队,结合从头算的方法以及可解释和可预测的机器学习模型,对立方(全)赫斯勒(Heusler)家族的超导和弹性性质进行了广泛的研究。作者通过分析这些性质的统计分布,并将其与反钙钛矿进行比较,发现有些普遍的行为应该适用于所有传统的超导体,而其他的则特定于该材料家族。在该工作中,作者发现了八种假设的材料,其临界温度均超过10K,与此家族当前的Tc=4.7K记录相当。此外,作者还预期这些材料中的大部分都会具有很高的韧性,使它们成为制造超导磁体的线材和带材的潜在候选材料。本研究展示了机器学习模型在理解和探索超导材料的功效。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050