首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Efficient screening framework for organic solar cells with deep learning and ensemble learning
发布时间:2023-11-14

Efficient screening framework for organic solar cells with deep learning and ensemble learning

   Hongshuai Wang , Jie Feng, Zhihao Dong, Lujie , Miaomiao Li, Jianyu Yuan, and Youyong Li        
 

    npj Computational Materials 9: 200 (2023)
    doi.org/10.1038/s41524-023-01155-9
    Published online: 23 October 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract:  Organic photovoltaics have attracted worldwide interest due to their unique advantages in developing low-cost, lightweight, and flexible power sources. Functional molecular design and synthesis have been put forward to accelerate the discovery of ideal organic semiconductors. However, it is extremely expensive to conduct experimental screening of the wide organic compound space. Here we develop a framework by combining a deep learning model (graph neural network) and an ensemble learning model (Light Gradient Boosting Machine), which enables rapid and accurate screening of organic photovoltaic molecules. This framework establishes the relationship between molecular structure, molecular properties, and device efficiency. Our framework evaluates the chemical structure of the organic photovoltaic molecules directly and accurately. Since it does not involve density functional theory calculations, it makes fast predictions. The reliability of our framework is verified with data from previous reports and our newly synthesized organic molecules. Our work provides an efficient method for developing new organic optoelectronic materials.
摘要:  有机光伏由于在开发低成本、轻便和柔性能源方面具有独特的优势引起了广泛的关注。功能性分子设计和合成可以加速发现理想的有机半导体。然而,在广阔的有机化合物空间进行实验筛选的代价十分昂贵。在这里,我们通过结合深度学习模型(图神经网络)和集成学习模型(LightGBM),开发了一个框架,该框架能够快速准确地筛选有机光伏分子。这个框架建立了分子结构、分子性质和器件效率之间的关系。我们的框架可以直接准确地评估有机光伏分子的化学结构。由于它不涉及密度泛函理论计算,因此可以快速实现预测。通过已发表数据和新合成的有机分子验证了我们的框架。这个工作为开发新型有机光电材料提供了一种高效的方法。
Editorial Summary

Artificial Intelligence Aids in Efficient Screening and Design of Organic Solar Cells

Organic solar cells are a new type of photovoltaic material with many advantages, such as low cost, environmental friendliness, large-scale production, and flexibility in device fabrication. In order to improve the efficiency and stability of organic solar cells, scientists have developed many different types of organic semiconductor materials. However, finding high-performance organic semiconductor materials remains a key challenge in organic solar cell research. With the development of big data and artificial intelligence technology, data-driven materials research has become a new trend in materials science. Combining large amounts of data generated by high-throughput screening with artificial intelligence technology for materials performance prediction and optimization helps accelerate the research process of organic solar cell materials. This study proposes a method for high-throughput screening of organic solar cells using artificial intelligence, combining deep learning and ensemble learning. Starting from molecular structure, the molecular physicochemical properties predicted by graph neural networks are used as inputs for the ensemble learning model, achieving accurate and rapid prediction of device properties. The team of Professor Li Youyong from the Functional Nanomaterials and Soft Matter Research Institute of Suzhou University, in collaboration with Professor Yuan Jianyu's team, has achieved high-throughput screening of organic solar cells through machine learning. This study uses a small dataset containing high-quality experimental data to train an ensemble learning model that predicts the photoelectric conversion efficiency (PCE) based on molecular physicochemical properties. Then, they train a Self-Learning Input Graph Neural Network (SLI-GNN) capable of accurately predicting molecular properties using a dataset containing a large number of molecular structures and properties. By combining these two models, a framework that can directly predict PCE based on molecular structure is designed. This framework demonstrates excellent performance and versatility in high-throughput screening and has been validated by experimental results. By integrating deep learning and ensemble learning, direct, fast, and accurate prediction of PCE based on molecular structure is achieved. This method not only improves the efficiency of organic optoelectronic material screening but also reduces computational costs, providing strong support for the design and optimization of optoelectronic devices.
人工智能助力有机太阳能电池的高效筛选与设计

有机太阳能电池是一种新型的光伏材料,它具有许多优点,如低成本、环保、可大面积生产、可制成柔性器件等。为了提高有机太阳能电池的效率和稳定性,科学家们已经开发了许多不同类型的有机半导体材料。然而,寻找性能优越的有机半导体材料仍然是有机太阳能电池研究的一个关键挑战。随着大数据和人工智能技术的发展,数据驱动的材料研究已成为当今材料科学研究的新趋势。结合高通量筛选产生的大量数据,利用人工智能技术对材料性能进行预测和优化,有助于加速有机太阳能电池材料的研究进程。该研究提出了一种利用人工智能实现有机太阳能电池高通量筛选的方法,结合了深度学习与集成学习,从分子结构出发,利用图神经网络预测得到的分子理化性质作为集成学习模型的输入,实现了对器件性质的准确快速预测。来自苏州大学功能纳米与软物质研究院的李有勇教授团队与袁建宇教授团队合作,通过机器学习实现了有机太阳能电池的高通量筛选。该研究利用一个包含高质量实验数据的小型数据集,训练了一个基于分子物理化学性质的光电转换效率(PCE)预测的集成学习模型。接着,他们利用一个包含大量分子结构和性质的数据集,训练了一个能够准确预测分子性质的SLI-GNN(自学习输入图神经网络)。通过这两个模型,设计了一个可以直接根据分子结构预测PCE的框架。该框架在高通量筛选中展示出了优异的性能和通用性,并通过实验结果进行了验证。通过结合深度学习和集成学习,实现了基于分子结构的PCE的直接、快速和准确预测。该方法不仅提高了有机光电材料筛选的效率,还降低了计算成本,为有光电器件的设计和优化提供了有力支持。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050