首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Exploring high thermal conductivity polymers via interpretable machine learning with physical descriptors
发布时间:2023-11-14

Exploring high thermal conductivity polymers via interpretable machine learning with physical descriptors

   Xiang Huang, Shengluo Ma, C. Y. Zhao, Hong Wang & Shenghong Ju       
 

    npj Computational Materials 9: 191 (2023)
    doi.org/10.1038/s41524-023-01154-w
    Published online: 14 October 2023
   AbstractFull Text | PDF OPEN
  

  
Abstract:  The efficient and economical exploitation of polymers with high thermal conductivity (TC) is essential to solve the issue of heat dissipation in organic devices. Currently, the experimental preparation of functional polymers with high TC remains a trial-and-error process due to the multi-degrees of freedom during the synthesis and characterization process. Polymer informatics equips machine learning (ML) as a powerful engine for the efficient design of polymers with desired properties. However, available polymer TC databases are rare, and establishing appropriate polymer representation is still challenging. In this work, we propose a high-throughput screening framework for polymer chains with high TC via interpretable ML and physical feature engineering. The hierarchical down-selection process stepwise optimizes the 320 initial physical descriptors to the final 20 dimensions and then assists the ML models to achieve a prediction accuracy R2 over 0.80, which is superior to traditional graph descriptors. Further, we analyze the contribution of the individual descriptors to TC and derive the explicit equation for TC prediction using symbolic regression. The high TC polymer structures are mostly -conjugated, whose overlapping p-orbitals enable easy maintenance of strong chain stiffness and large group velocities. Ultimately, we establish the connections between the individual chains and the amorphous state of polymers. Polymer chains with high TC have strong intra-chain interactions, and their corresponding amorphous systems are favorable for obtaining a large radius of gyration and causing enhanced thermal transport. The proposed data-driven framework should facilitate the theoretical and experimental design of polymers with desirable properties.
摘要:  高效、经济地开发具有高导热性能的聚合物对于解决有机器件散热问题至关重要。当前,由于合成和表征过程中的诸多不确定性,功能聚合物的实验制备仍然是一个反复试验的过程。聚合物信息学装备机器学习作为理想聚合物设计的强大引擎,但可靠的聚合物热导率数据十分有限,同时建立合适的聚合物描述符依然是具有挑战的。在这项工作中,我们提出了一个集成可解释机器学习和物理特征工程的高通量框架用于高导热聚合物的筛选。通过分层递归筛选技术,我们将320个初始物理描述符降维到最终的20个优化描述符,并且所训练的机器学习模型预测精度R2均大于0.80,优于传统的图表示方法。进一步地,我们分析了各个物理描述符对于热导率的贡献,并使用符号回归构建了用于预测聚合物热导率的显式方程。我们所发现的高导热聚合物大多是 共轭的,其电子体系中的p轨道重叠有利于维持强的链刚度及产生大的声子群速度。最终,我们建立了聚合物单链和非晶无定形聚合物系统之间的联系。高导热聚合物链通常有着强的链内相互作用,其对应的非晶无定形系统有利于获得较大的回转半径从而增强热输运。所提出的数据驱动框架将有助于理论和实验设计具有理想性能的聚合物。
Editorial Summary

Seeing the forest for the trees?Unifying the microscopic structures and thermal conductivity of polymers under a data-driven paradigm

A novel data-driven framework integrating physical feature engineering, interpretable machine learning and symbolic regression techniques is suggested to establish a complete mapping from polymer micro configurations to thermal conductivities, as well as the efficient identification of high thermal conductivity polymers. A team led by Prof. Shenghong Ju from the China-UK Low Carbon College, Shanghai Jiao Tong University, China, proposed a physical feature engineering for representing complex polymer systems, which combines multiscale simulations and interpretable machine learning for establishing an informatics model on the relationship between the microstructures and thermal conductivity in polymer systems, and reveals a unified physical rule of the hierarchical structures and thermal conductivity: (a) High thermal conductivity polymer chains usually have strong intra-chain interatomic interactions, and the corresponding amorphous polymers are prone to exhibit improved thermal conductivity. (b) Most of the identified high thermal conductivity polymers are conjugated, facilitating the maintenance of a large chain stiffness. (c) Since polymer chains have a highly aligned chain orientation, their thermal conductivity variations are more sensitive to changes in chain ordering due to dihedral rotation. The proposed approach may assist in the research of high-performance polymers that are not limited to thermal conductivity, and aid in understanding the linkage between the properties of different hierarchical structures.
见微知著:数据驱动范式下的聚合物微观层次结构与导热性能的统一

本征聚合物的低导热特征所导致的散热问题与其在集成电路封装及有机半导体领域的广泛应用需求相矛盾。但是受到聚合物合成复杂的工艺及高昂的成本,公开的可靠聚合物热导率数据十分稀少。这严重阻碍了对于聚合微观结构与导热性能之间映射关系的理解及高导热聚合物的开发进程。该研究设计了新颖的集成物理特征工程、可解释机器学习与符号回归技术的数据驱动框架,以高通量分子动力学计算的聚合物热导率数据为基础,结合从分子单体原子和电子结构等信息提取的物理描述符构建模型,从而建立聚合物微观构型与热导率的完整映射,以及实现了高导热聚合物链的高效筛选。来自上海交通大学中英国际低碳学院鞠生宏副教授团队,提出了一种用于描述复杂聚合物体系的物理特征工程技术,结合多尺度模拟仿真与可解释的机器学习建立了聚合物系统中微观结构构象与导热性能的模型,并揭示了不同层次结构中微观作用与导热强化机制的统一联系。该研究除了建立了高保真数据驱动模型用于高导热聚合物链的高效筛选外,还揭示了不同层次结构的构象、原子作用、电子结构与导热性能的内在联系:1)高导热聚合物链通常有着强的链内原子间相互作用,其对应的非晶无定形聚合物也更易于表现好的导热性能;2)大多高导热聚合物为共轭结构,有利于保持大的链刚度;3)由于聚合物链有着高度一致的链取向,其热导率变化对于二面角旋转导致的链的有序度改变更为敏感。该研究方法可以进一步推广,为聚合物结构和性能关系的探究提供了行之有效的思路,也为指导高性能聚合物的设计提供高效的方案。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050